FINAL REPORT

Oronogo-Duenweg Mining Belt Superfund Site, Phase 10 Jasper County, Missouri

Prepared for:

U.S. Environmental Protection Agency – Region 7 11201 Renner Blvd Lenexa, KS 66219

Prepared by:

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240-2788 (800) 229-7495 www.eqm.com

EQM PN: 030319.0001

Contract Number EP-S7-15-06

March 2021

40575500

Table of Contents

ACRON	YMS	3
1.0	Final Report	
2.0	Project Contract	4
3.0	Project Location & Scope	
4.0	Project Areas & Totals	6
4.1	Mine Shafts	9
4.2	Parcels where mine waste remains	10
5.0	Project Costs	11
6.0	Key Personnel	
7.0	Repositories Utilized	13
8.0	Fill Materials	14
9.0	Notable Deviations from Contract Design/Specifications	15
9.1	Contract Modifications involving additional Scope/Services	
10.0	Schedule Impacts	
10.1	Weather Delays	21
10.2	Delays Associated with COVID-19	21

Tables

- Table 1 Mine Waste Areas remediated in Phase 10
- Table 2 Project Totals
- Table 3 Parcels where mine waste remains
- Table 4 Project Costs
- Table 5 EQM Personnel & Roles
- Table 6 Total EQM Man-hours
- Table 7 DBA Man-hours
- Table 8 Repositories
- Table 9 Utility Relocations
- Table 10 Number of Workdays impacted by adverse weather

Attachments

- Appendix A- Survey Data
- Appendix B- Chemical Data
- Appendix C- Safety & Health Phase-out Report
- Appendix D- Data for Fill Materials

ACRONYMS

Ac	Acre
ACOR	Alternate Contracting Officer Representative
Cd	cadmium
CDFR	Chemical Data Final Report
CO	Contracting Officer
COR	Contracting Officer Representative
CY	Cubic yard
DBA	Davis-Bacon Act
EQM	Environmental Quality Management, Inc.
GPS	global positioning system
HSO	Health & Safety Officer
LOD	Limit of Disturbance
MO	Missouri
MW	Mine Waste Area
NTP	Notice to Proceed
OU#1	Operable Unit #1
Pb	lead
PoP	Period of Performance
	part per million
PWS	Performance Work Statement
QA	- ·
QC	quality control
ROD	Record of Decision
SOW	Scope of Work
USEPA	United States Environmental Protection Agency
XRF	X-ray fluorescence
Zn	zinc

1.0 Final Report

Environmental Quality Management, Inc. (EQM) has prepared this final report to summarize the scoped remedial activities completed in execution of the Performance Work Statement (PWS) of the contract documents. This report consists of this summary and three significant attachments (*Attachment A – Survey Data, Attachment B – Chemical Data, and Attachment C – Safety & Health Phase-out Report*).

2.0 Project Contract

The United States Environmental Protection Agency, Region 7, (USEPA) awarded contract number EP-S7-15-06 to EQM on August 25, 2015 for the Oronogo-Duenweg Mining Belt Site Operable Unit 01 (OU #01) - Phase 10 project. The format of the project's period of performance (PoP) was one base year followed by four optional years. The original contract amount was \$31,887,651.60. USEPA issued EQM a notice to proceed (NTP) on October 29, 2015. USEPA extended the contract to include the four optional years upon the expiration of each subsequent year. EQM concluded field operations in November 2020, prior to the expiration of the final PoP of November 15, 2020. USEPA issued a total of 49 contract modifications to EQM over the duration of the contract, revising it as necessary for newly scoped tasks, unforeseen conditions, work stoppages and adjustments of the contract quantities, performance period, and changes of key personnel.

3.0 Project Location & Scope

The Oronogo-Duenweg Mining Belt Site Operable Unit 01 (OU #01) - Phase 10 project was located in metropolitan area in and around Joplin, Missouri and included properties that were in Jasper and Newton Counties. The selected remedy consisted of excavation, hauling, and consolidation of mine waste (i.e., mainly chat and bull rock), and underlying soils contaminated

with heavy metals, that remained on the surface at 41 different sites within OU#01. The mine waste and contaminated soils were hauled to and consolidated to specific repository areas. For this remedial action and report, the term mine waste includes both mine waste and underlying contaminated soil with heavy metal concentrations greater than the cleanup goals (400 parts per million (ppm) for lead, 40 ppm for cadmium, and 6,400 ppm for zinc). The remedy also included:

- installing temporary erosion controls (silt fence, straw bales/wattles);
- clearing & grubbing of trees and shrubs;
- filling open mine shafts and subsidence pits with mine waste;
- capping the mine waste repositories with clay and topsoil;
- grading the disturbed areas of each mine waste area to promote drainage;
- re-vegetating the disturbed areas with grass seed via a combination of techniques (hydroseeding, broadcast spreading and seed drilling);
- constructing detention, retention basins, drainage swales, rip-rap check dams and channels for proper stormwater management; and,
- and installation of new, replacement fencing.

EQM conducted post-excavation and post-restoration surveys of the sites to document the final condition of each site. All remedial activities were conducted in accordance with the final plans and specifications developed during the remedial design and the EPA Superfund Record of OU-1 Decision (ROD) issued September 30, 2004.

In total, EQM excavated approximately 3.3 million cubic yards of mine waste from 41 mine waste areas and hauled it to various repositories, some onsite and some offsite, as authorized by USEPA's Contracting Officer Representative (COR). To verify the remedial action objectives were attained in each area, EQM collected 3,624 soil samples from the post-excavation surface soils and analyzed those samples using X-ray fluorescence (XRF) technology. Table 1 below identifies the 41 mine waste areas remediated and their limits of disturbance (LODs) in acres. The original LOD for each area was provided by the USEPA's design engineer (Black & Veatch) and represented the pre-remediation condition of each mine waste area based on their previous site investigation. The original LODs were provided to EQM as part of the contract documents. Additionally, USEPA provided original surface profiles (LIDAR) as the

pre-remedial survey for each area. EQM's survey subcontractor (Anderson Engineering, Joplin, MO) developed the final LODs based on the total area after completing a final survey in each area. EQM adjusted the depth and horizontal limits of the excavations based on actual field conditions (i.e., both visual inspections and XRF results). Volume calculations used the LIDAR data provided by USEPA as baselines. *Attachment A – Survey Data* contains site figures, maps and surveys generated by Anderson Engineering during this project. The surveys depict the final LODs; additionally, Anderson Engineering provided the volume calculations and drawings of pre-excavation grades & contours, post-excavation grades & contours, 10,000 sft grids established by EQM for confirmation sampling and post-restoration/as-built drawings for each of these mine waste areas.

EQM has included details describing the confirmation field sampling events and the XRF analytical data of the confirmation samples from the mine waste areas in *Attachment B* – *Chemical Data*. EQM has also included the quality control analytical data of the imported soils used as backfill in *Attachment B* – *Chemical Data*. In *Attachment C* – *Safety & Health Phase-out Report*, EQM has included a description of the incidents, accidents and injuries that occurred during the execution of the contract as well as a summary of the air monitoring/employee exposure monitoring program that EQM conducted. A description of the procedure that EQM implemented to decontaminate the heavy equipment used is also included.

4.0 Project Areas & Totals

Table 1 identifies the Mine Waste areas remediated by EQM, the volume of mine waste excavated, original LODs and final LODs of each area. Volumes were determined by Anderson Engineering through a comparison of the pre-excavation and post-excavation survey data. Table 2 summarizes EQM's project totals for each of the specific contract line items through each of base and option year periods.

Table 1 – Mine Waste Areas remediated in Phase 10

Area	Volume of Mine Waste (cyd), actual	Volume of Mine Waste (cyd), per design	Original LOD (Ac)	Final LOD (Ac)
Base Area 1	123,844	No data provided/available	38.6	38.8
Base Area 2	20,242	No data provided/available	5.6	5.2
Base Area 3	12,301	No data provided/available	7.9	4.7
Base Area 4	29,138	No data provided/available	9.1	8.8
Base Area 6	76,246	No data provided/available	14.5	12.1
Base Area 8	133,625	No data provided/available	27.7	22.9
Base Area 11	1,234	No data provided/available	6	4.6
Base Area 13	69,102	No data provided/available	13.2	9.3
Base Area 14	19,951	No data provided/available	3.9	3.1
Base Area 15	68,189	No data provided/available	30.8	11.8
Opt. 1 Area 1	166,064	No data provided/available	35.4	30.1
Opt. 1 Area 2	111,277	No data provided/available	19	14.7
Opt. 1 Area 3	68,858	No data provided/available	21.4	19
Opt. 1 Area 6	48,035	No data provided/available	14.7	15.2
Opt. 1 Area 9	20,015	No data provided/available	4.6	5.2
Opt. 1 Area 15	10,885	No data provided/available	1.9	2
Opt. 1 Area 20	54,227	No data provided/available	3.6	7.8
Opt. 2 Area 1	197,182	No data provided/available	61.64	42.83
Opt. 2 Area 3	119,302	No data provided/available	17.8	29.4
Opt. 2 Area 5	36,144	No data provided/available	8.4	7
Opt 2-6	674,502	No data provided/available		
Opt. 2 Area 6 -	41,490	No data provided/available	146.9	94.1
Opt. 2 Area 6 -	116,507	No data provided/available	146.9	16.7
Opt. 2 Area 6 - West	228,304	No data provided/available	25.4	39.7
Opt. 2 Area 7	155,965	No data provided/available	50-00 p. 2. 20 p. 20 p. 20	24.3
Opt. 2 Area 8	67,977	No data provided/available	12.8	36.7
Opt. 2 Area 9	4,527	No data provided/available	n/a	2.4
MW-09	119,630	131,000	90.2	34.15
MW-14-01_02	120,311	78,000 (MW 14)	44.61	26.99
MW 14-03_04	4,147	Included above	\$10,000 to \$10,000 to \$1	2.5
MW-18-01_02	165,397	92,000 (MW 18)	56.96	39.93
MW-19-01_02	100,510	73,000 (MW 19-1, 2 & 3)	23.04	23.1
MW-19-03	34,466	Included above	2	9.48
MW-25	8,572	50,000		2.9
MW-26-01	96,420	198,000 (MW 26-1, 4 & 5)	37.1	27.67
MW-26-04	10,617	Included above	2.14	2.1
MW-26-05	37,852	Included above	8.97	10.39
CCC Church	612	No data provided/available	N/A	0.22
Totals	3,373,667		942.76	614.45

Final Report

	Table 2 – Project Totals							
CLIN	Description	Unit	Base	Option 1	Option 2	Option 3	Option 4	Project Totals
X001	Erosion Control							
X001AA	Sediment Fence	LF	454	1,812	570	2,150	3,271	8,257
X001AB	Rip Rap	Ton	654	2,000	915	2,461	276	6,306
X001AC	Stabilized Construction Entrance	Ea	5	6	6	4	4	25
X002	Clearing and Grubbing	Acre	176	68	160	239	24	667
X003	Earthwork							
X003AA	Excavation/Disposal of Contaminated Waste	CY	493,685	586,929	982,379	794,100	516,574	3,337,667
X003AB	Placement of material for Drainage	CY	10,949	100,000	96,721	131,700	127,040	466,410
X003AC	Grade Excavated Areas to final grade	Acre	134	118	160	239	24	676
X003AD	Import/Place Clay for all Repository Caps	CY	14,150	100,996	48,810	41,143	138,882	343,981
X003AE	Import/Place Topsoil for all Repository Caps	CY	4,000	28,997	5,000	8,067	58,770	104,834
3004	Seeding/Fertilizing							
X004AA	Seeding/Fertilizing Repositories	Acre	5	10	1	0	61	77
X004AB	Seeding/Fertilizing (Fescue)	Acre	74	118	92	166	297	747
X005	Remove/Replace Fencing	LF	5,000	7,497	5,370	10,021	20,588	48,476
X006	Supply/Install 24" CMP Pipe	LF	80	0	164	26	40	310
X007	Supply/Install 36" CMP Pipe	LF	60	0	55	5	460	580
X010	Rip Rap, 12"-36"	Ton	0	0	0	681	2,981	3,662
X011	Crushed Rock, 3" Clean	Ton	0	0	0	570	1,636	2,206
X012	Gravel, 1-3" Crushed w/fines	Ton	0	0	0	5,407	1,896	7,303
X014	Tire Disposal	Ton	0	0	0	45	3	48

4.1 Mine Shafts

The following table identifies the mine shafts that EQM encountered during the project:

Point #	Location, decimal degrees	Elevation	Site Location
4071	340368.816, 2772623.959	967.172	Area 2-6
4072	340339.582, 2772356.573	965.268	Area 2-6
4151	340965.397, 2772724.273	953.212	Area 2-6
4153	341329.627, 2773206.385	945.271	Area 2-6
4336	345744.650, 2765040.603	870.03	Area 1-15
5636	344476.689, 2771100.884	909.062	Area 2-7
5637	344346.973, 2771133.370	911.473	Area 2-7
5638	344069.099, 2771006.625	916.667	Area 2-7
5639	344161.796, 2771011.354	915.697	Area 2-7
5640	344292.173, 2771353.486	930.079	Area 2-7
8048	340233.815, 2773242.183	978.923	Area 2-6
10736	335814.017, 2754376.300	929.016	
10737	335738.940, 2754422.830	919.153	
12134	336002.560, 2754514.243	942.239	
14179	346823.583, 2780183.514	938.688	MW19-1
14180	346756.377, 2780193.515	936.724	MW19-1
14181	346731.224, 2780089.703	945.591	MW19-1
14182	346731.470, 2780089.916	945.755	MW19-1
14183	346583.461, 2779689.604	938.494	MW19-1
14184	346652.244, 2779647.443	933.046	MW19-1
14185	346702.232, 2779715.752	937.062	MW19-1
14186	346710.945, 2779755.299	937.964	MW19-1
14187	346646.756, 2779796.346	942.528	MW19-1

4.2 Parcels where mine waste remains

The following table identifies the parcels and parcel owners for those properties that mine waste was not completely removed from per the direction of the property owner:

Table 3 – Parcels where mine waste remains

Mine Waste Area	Parcel ID	Property Owner	Contact Information
Area 1 Base	17703600000006000	Ross Family Trust	No info available
Area 8 Base	17702500000032028	Christopher Farris	1106 E Windsor Joplin Mo 64801
Area 7 Base	17702500000033000	Vearl Starchman	5594 West Emerald Rd. Joplin Mo 64801
	17702500000031000	Wanda McCorkle & Ralph Barger	6028 W Ebony Joplin, MO 64801
Area 2-6 Larry Wald	1690320000001001	Larry Wald	
MW-18	16502100000001000	Paul & Shirley Eddy	
Option 1 area 10	17702500000049001	Steve Nelson	
Option 1 Area 11	17702500000003000	Blue Shutter Investments	No info on file
Option 1 Area 12	17702500000042000	Brandy Goforth	3742 N Central City Road Joplin Mo
Option 1 Area 13	17702500000038000	Johnny and Argie	3586 N Central City Rd.
		Mathis	Joplin Mo 64801
Option 1 Area 14	1690300000010000	Mark & Tammy Struwe	5415 W Belle Terrace Ln. Joplin Mo 64801
Option 1 Area 16,17,19	1690300000010001	Crum TR	5357 Belle Terrace Ln Joplin Mo 64801

5.0 Project Costs

The following project costs were expended by USEPA in the base contract and four optional periods:

Table 4 - Project Costs

Contract Period	Amount
Base	\$3,685,978.44
Option 1	\$5,973,773.30
Option 2	\$7,768,005.60
Option 3	\$7,087,895.55
Option 4	\$9,894,071.57*
Total	\$34,409,724.46

^{*}Assumes pending payout of both incentives

The final contract amount expended was \$34,409,724.46; whereas, the original was \$31,887,658.60, an increase of \$2,522,065.86.

6.0 Key Personnel

This contract was executed by the following EQM staff in the key roles identified below:

Table 5 - EQM Personnel & Roles

Role/Position	Employee	Effective Dates of Project Involvement
Project Manager		1/1/15 – 1/15/17
Project Manager		1/16/17 – 11/15/2020
Site Superintendent		1/1/15 – 11/15/2020
QC Manager/HSO		1/1/15 – 1/1/15
Interim QC Manager/HSO		1/1/18 – 11/15/2020

EQM's personnel worked a total of 233,824 man-hours over the entire duration of the contract; Table 5 identifies the man-hours expended per calendar year.

Table 6 - Total EQM Man-hours

Calendar Year	Total Man-hours (both DBA & non-DBA)
2015	559
2016	42,165
2017	60,600
2018	55,023
2019	52,080
2020	23,397
Total	233,824

EQM's craft personnel, subject to Davis-Bacon Wages (DBA), worked a total of 208,133 man-hours; total hours per each DBA classification are identified below:

Table 7 - DBA Man-hours

Labor Category	Total Hours
Equipment Operator	88,369
Truck Driver	108,668
Laborer	11,096
Total	208,133

Key USEPA personnel assigned to oversight roles on this contract include:

Role	USEPA Personnel
Contracting Officer (CO)	Jack Peterson/Koni Fritz
Contracting Officer's Representative (COR)	Mark Doolan/Steve Kemp
Alternate Contracting Officer's Representative (ACOR)	Todd Campbell/Liz Hagenmaier

7.0 Repositories Utilized

EQM used ten different repositories to consolidate the mine waste from all the sites. Some new repositories were included in the pre-remedial design documents whereas others were developed as the result of field conditions; however, the majority of the mine waste was consolidated at the Gystack Repository. The need for, and exact locations, of new repositories were identified by EQM after consulting with the individual property owner; each was also authorized/approved for use by the COR. EQM also filled open mine shafts that were present in the work zones with mine waste; however, EQM did not track the volume of mine waste placed in shafts separately from the final cut volume/calculation.

The table below detailed the repositories that EQM used with an estimate of the mine waste placed in each based on field tracking of truck counts and average payloads:

Table 8 – Repositories

Repository	Mine Waste – estimated volume placed, (cubic yards)	New or Existing
Balestrin Repository	10,682	New (authorized by COR)
Area 1-6	21,642	New (authorized by COR)
Area 2-8	67,977	New (authorized by COR)
Area 2-9	4,527	New (authorized by COR)
Area 11	1,234	New (included in design)
Central City Fireworks	8,562	New (authorized by COR)
MW 19-1	35,000	New (included in design)
MW 26-1	28,420	New (included in design)
Snowball	515,571	New (authorized by COR)
Gypstack	2,596,695	Existing

Maps identifying the location and size of these repositories are included in *Attachment A* - *Survey Data*; the maps illustrate the overall shape and design, as well as volumes of clay and

topsoil that EQM placed as cover materials over the repositories. Please note that EQM did not construct a cover, consisting on clay cap and revegetation, over the Gypstack Repository since it remains active beyond the scope of work for this contract.

All these repositories with the exception of MW 19-1, MW 26-1, and Partial Snowball were approved per COR (Mark Doolan). Snowball was initially approved as a repository by COR Doolan and later expanded upon as authorized by Steve Kemp, who replaced Mark Doolan as COR. The MW 19-1 repository used was in the Black and Veatch design set, with its expansion approved by COR (Kemp) as well as the repository contained on MW 26-1.

8.0 Fill Materials

EQM obtained clay and topsoil from multiple off-sit borrow areas/sources during the execution of the fieldwork:

- Wildwood Ranch, Junction of 20th & Malang Road, Joplin, MO;
- Wildwood Ranch, Junction of 20th & Central City Road, Joplin, MO;
- Schuber Mitchell, Junction of 7th Street and Chesterfield Drive, Webb City, MO; and,
- Ray Schmidt, Fir Road & P Highway, Joplin, MO.

Data on the chemical and physical properties of the fill materials obtained from each borrow source identified above is included in Appendix D.

Backfill clay and clay capping material was taken from on-site sources usually same parcel. EQM didn't send off samples of this material due to the fact available material on or off site, being very rocky, usually would not meet spec. The material was field tested daily to confirm all levels of lead, zinc and cadmium were below action levels for the contract. This method for clay backfill had verbal consent from former COR Mark Doolan and had been discussed with replacement COR Steve Kemp and assistant Todd Campbell.

9.0 Notable Deviations from Contract Design/Specifications

It was determined through field testing efforts that many sites within this contract had mine waste and contaminated soils extending past the original Limits of Detection (LODs) set forth in the contract documents (i.e., Black and Veatch Design set). EQM often sought and received authorization from the COR to "chase" after this mine waste. In particular, Area 2-6 North, also known as Dogwood Lane, the original drawings show a clear depiction of mine waste excavated outside the original contract design. The original design set had limits set to just short of Pump Lane. After excavating up to this point, EQM was authorized by the COR to continue removing mine waste from Pump Lane to the north, crossing Dogwood Lane, leading to Turkey Creek. The area originally had a very small LOD around an old railroad bridge, less than 1 acre, located to the north of Pump lane, along an easement for Liberty Power. This excavated area grew in size from the 1 acre to 16.72 acres. This involved the entire valley being excavated to the north across Dogwood Lane along waterway which ran parallel the rail bed and accumulated chat and other contaminated sediment. EQM excavated approximately 116,500 cubic yards of mine waste and encountered mine waste to a depth of 10-12 feet below ground surface.

9.1 Contract Modifications involving additional Scope/Services

EQM completed several tasks that deviated from the original scope of work but were necessary to more completely fulfill the intent of the original contract. These additional tasks were:

• Porter Estates Trailer Demolition

EQM received contract modification P00030, on 2/15/19, for the demolition and debris disposal of 25 derelict house-trailers located on Mr. Ron Porter's property within MW Area 2-3. This work was necessary to access & remove the existing mine waste underneath the trailers. Approximately 25 tons of demolition debris was disposed of at the local disposal facility. EQM coordinated our efforts in conjunction with USEPA, Missouri Department of Natural Resources and Jasper County Health Department. The unsanitary general site conditions (i.e., lack of running water, electrical power, & improper sanitation) of the trailers posed health and safety risks to EQM personnel

working on-site such as exposure to sharps (i.e., needles from drug use) and biologicals (i.e., coliform due to potential presence on human fecal matter, vermin due to the open presence of garbage and food waste, lice due to unclean living environment). The demolition work and subsequent mine waste excavation was completed in August 2019. Total additional cost \$87,500.00.

• Gystack Repository Repairs

EQM received contract modification P00015, on 10/20/2017, for the repairs of erosion and construction of a retention basin for stormwater at the Gystack Repository located off Malang Street. Work was completed in November 2017. Total additional cost was \$28,738.90.

• Gystack Repository Regrading

EQM received contract modification P00036, for the regrading of approximately 258,000 cy of mine waste at Gystack Repository and install drainage swales/features. EQM's scope of work did not include placement of clay, topsoil or revegetation at Gypstack since it remains an active repository. Work was completed in February 2020. Total additional cost was \$1,254,999.81.

• Construction of Box Culvert at Dogwood Lane

EQM received contract modification P00041 on 04/03/2020 for the construction of a concrete box culvert and associated roadbed work at Dogwood Lane as part of Option Year 4 for \$289,349.72. Work was completed in October 2020.

• Hauling & Spreading of Wood Chips

EQM acquired wood chips from the City of Joplin and spread the wood chips on select areas of restored mine waste areas to increase the organic content of the surface soils and promote the establishment of vegetation. This was done on a limited, trial basis to evaluate if the wood chips increased the establishment/vitality of grass.

• <u>Disposal of Waste Tires</u>

In response to discovery of numerous waste tires, (illegal dumped), within the mine waste areas, USEPA added a line item for tire disposal to EQM's contract during Option 3. EQM disposed of 45 tons of tires in Option 3 and 3 tons in Option 4 at local facility permitted to accept tires. Total additional cost was \$7,896.00.

• Relocation of Utility Lines

EQM was required to relocate three separate sections of above-ground power poles (Area 2-6/McDonald Property, Dogwood Lane and MW-09 Carl Junction) and one underground AT&T phone line (Area 2-6) in order to completely excavate the mine waste from those areas. Total additional cost was \$219,319.98. Table 8 identifies additional detail regarding each activity:

Table 9 – Utility Relocations

Mine Waste Area	Item	Cost	Magnitude/Extent	Execution Time ¹
Area 2-6/ McDonald	Utility line, aboveground (Liberty)	\$65,909.98	approx. 2,300 lft	9 months
Area 2-6 Dogwood	Utility line, aboveground (Liberty)	\$117,933.54	17 poles	20 months
MW-09	Utility line, aboveground (Liberty)	\$14,546.05	5 poles	9 months
Area 2-6	Underground Phone Line (AT&T)	\$20,930.41	3,026 lft of new line	5 months

¹time elapsed from solicitation of quotes/proposal through billing cycle and close-out

• Remedial activities with floodplain – MW-09

MW-09 had a large open water filled mine pit which butted against east side of County Road JJ. It could pose danger to passing traffic or pedestrians who may venture into the north bound road ditch area as the property owner had pointed out. During this conversation with the Mr. Gerald Hudson, the owner, we discussed disposing of excavated mine waste in this pit due to its close proximity and the fact it's where it came from to begin with. After some thought Mr. Hudson decided some fill would be fine but wanted minimal impact on the "pond". He allowed EQM to deposit waste across the west end of the pit building a north/south buffer between the roadway and water. This would put a safer space between the roadway and the water to allow for easier access during mowing and would generally clean up the swampy eyesore at that end of mine pit. Mr. Hudson stated after the buffer was built, he would likely plant grass and trees to restrict visibility of his equipment yard from the roadway. EQM's Site Superintendent, Jason Smith, received verbal approval from USEPA COR, Steve Kemp, to place mine waste in this manner. EQM deposited approximately 119,000 cubic yards into the mine pit. The fill operation came to the attention of Jasper County Flood Plain Management,

represented by Mr. Clayton Cristy. After meeting Mr. Cristy onsite, he raised concern and identified the need for an elevation of the potential impact on the floodplain. EQM contacted Anderson Engineering Inc. (Anderson) for an evaluation of the fill and surrounding Center Creek area. On June 7 2019, EQM received a no-rise certification from Anderson stating the improvements completed during the EPA cleanup did not show an increase in the 100-Y (1% AEP) flood elevation. EQM provided a copy to the Jasper County Flood Plain Management and no further action was required.

• <u>Pederson Property</u>

Mr. Pederson's property was part of the contract areas of Option 1 of Phase 10. During the cleanup efforts, Mr. Pederson was very concerned about damage to surrounding vegetation (woods) as well as being somewhat reluctant about the cleanup in general. EQM was able to remove the mine waste with minimal damage to the area. A portion of LOD was located across Turkey Creek to north of Mr. Pederson's property. Mr. Pederson granted EQM permission to access that portion of the LOD and to travel across his property with mine waste using off-road dump trucks. A rip rap crossing was built across streambed allowing water to flow as off-road trucks crossed. Mr. Pederson liked the addition of the crossing and EQM left it in place when work was done per Mr. Pederson's request. He mentioned that he particularly liked the shallow pool created upstream as well as giving him access to small piece of his parcel across the stream.

This later became an issue when Mr. Pederson decided he did not like the crossing after work was done by EQM on another contract for HGL

Under a separate contract, EQM performed work for HydroGeoLogic Inc. (HGL) installing a designed creek bank stabilization system as a pilot study, on that very portion of Turkey Creek, just downstream from the crossing on Mr. Pederson's property. This contract made use of existing creek bank material which had been excavated and processed to create a suitable material for stair stepping the bank back while wrapping each step in coconut coir and inserting live stakes of Black Willow, Silky Dogwood and Buttonbush. All areas disturbed were seeded and watered daily for a period to establish growth. During this process Mr. Pederson's entire property was seeded either under the HGL contract or under the concurrent Phase 10 contract depending which the acreage fell under. During the performance of the HGL contract, the area suffered from multiple flood events which the entire project was under feet of water resulting in the live stakes being buried under creek gravel and having to be dug out by hand to prevent damage to stakes. This process was time consuming and created an extended finish which seemed to

aggravate Mr. Pederson. Also during the floods the creek rerouted creating an entirely different flow pattern to which Mr. Pederson was not happy.

Revegetation

EQM revegetated the disturbed portions of each mine waste parcels and capped repositories via hydroseeding. The effectiveness of the revegetation was reduced as the condition of post-excavation soils. Typically, the soil that EQM encountered post excavation exhibited a higher clay content, low organic content and contained more rocks than was ideal.

Efforts to revegetate the remediated areas were occasionally made more difficult by issues such as weather or property owners. EQM acquired a sub to hydro seeded multiple areas throughout the contract which then suffered very heavy rainfall causing seed to wash away in some areas. To help prevent this EQM then had the subcontractor drill seed in areas where they would rather than hydro seed in an effort to retain seed during a heavy rainfall event. This worked in some areas but not so much in others. After difficulty getting satisfactory results and the lack of effort on the contractor's part to drill seed in areas requested due to rocky clay (chirt), EQM chose to have a replacement sub the following year. With the new sub all acres were drilled, fertilized and mulched with hay at the rate of 2tn/acre. This proved to be cost effective and seemed to work better in most areas with the hay providing some cover to retain moisture when needed and also help with seed being washed off it seemed.

There were also properties who turned cattle in on areas as early as 2 days after application which usually meant the cover hay would be eaten reducing the grasses chance to germinate and get established. In other cases when ground was wet the cattle would stomp seed or sprouts into the mud effecting end result. Below is a list of areas affected this way:

- Richard Starchman Area 2-3 (Parcel IDs 17702500000021000, 17702500000021000, & 17702500000021001)
- Mona Ransom Area 2-3 (Parcel ID 17702500000010001)

These owners both turned cattle in days after seeding/mulching which EQM believes contributed to the less than ideal establishment of grass in their areas. EQM seeded these parcel's twice over 2 years with varied results

Methods used for the revegetation varied, it was done either by Hydro seeding, drilling or broadcasting of the seed for application.

Hydro seeding was done by combining the seed, fertilizer, mulch and any conditioners or fertilizers needed into slurry which was then sprayed evenly across the area. Usually a dye is included in the mix for a visual reference to what has been seeded and what has not to make the even application easier.

Drilling was simply using a grass drill designed to accurately meter grass seed and could be equipped with a second product box to meter fertilizer in the same application. Otherwise the fertilizer would need to be applied separately by some other means such as broadcasting

Broadcasting was done for multiple reasons but the main positive for EQM was the ability to get across extremely soft ground with various wet spots where a drill will plug with mud creating a difficult and uneven application. The broadcasting method is also easier on the equipment due to no contact with the hard rocky ground which is extremely hard on equipment.

Mulching was also done behind the seeder. This helps retain moisture and seems to help prevent seed from washing off during heavy rain, it also helps in the establishment of organics. Good quality weed free hay is important. The contractor also crimped the hay after spreading. This method was only used on areas such as repositories and the few areas where better soil exists to prevent damage to the implement.

RFB construction was the contractor EQM used in the final phases of contract.

The following is a list of areas RFB construction completed using a Broom sedge, Switchgrass, Fescue mix approved by COR Steve Kemp unless specified repository.

- Areas 2-1, 19-3, 19-1_2, 18-1, snowball repos, MW19-1_2 repos, MW14-1, Area 2-6N, Area 2-7 partial, MW18-1_2, MW14-4,
- A second time seeding was done on following areas
 Area 1-20, area 2-3, area 1-2, MW26-1, Area 2-3, MW14-1, 14-2, MW14-3, MW26-4 5, MW26-1
- These areas were completed by Challenger Construction. Areas include MW09, MW10, Base areas 1,2,3,4,9,13,14,15, 2-5, 1-15, 1-8, 2-9, Following areas also done by Challenger on the first time but required a follow up seed application 1-1, 1-2, 1-3, 1-6, 1-9, 1-20, 2-7, 2-6, 2-3, MW26-1.

10.0 Schedule Impacts

EQM's operations schedule was adversely impacted by both weather and COVID-19 pandemic during the contract period.

10.1 Weather Delays

EQM experienced delays associated with adverse weather throughout the contract period. Precipitation for the Joplin, MO area from April 2018 through April of 2020 was well above season averages, resulting in two requests for extensions to the PoP from EQM. Total impacts for 2015 and 2016 were estimated since EQM's field records were incomplete for those periods.

Calendar Year	Workdays canceled (rainouts, too wet, etc.)
2015	12, estimated
2016	36, estimated
2017	36
2018	52
2019	107
2020	77

Table 10 - Number of Workdays impacted by adverse weather

10.2 Delays Associated with COVID-19

EQM experienced two delays in Option Period 4 related to the COVID-19 pandemic. The first delay as a temporary stop work order issued by USEPA. The stop work order was in place from April 1, 2020 through June 11, 2020. EQM developed and provided new Health & Safety Plans, in response to the new threats posed by the COVID-19 virus, to USEPA before resuming field operations.

The second delay occurred from August 5 – August 16, 2020 as result of COVID-19 illness experienced by three personnel of EQM's field crew, including our superintendent and

quality control/health & safety manager. EQM's Project Manager (PM), Craig Hoby, halted work immediately and had all remaining field crew tested in accordance with EQM's plan and local guidance. EQM resumed work after having received negative test results on the remainder of the field crew and after EQM's PM was available to temporarily provide onsite superintendence and health & safety oversight.

Attachment A

Survey Data

(separate binder)

<u>Attachment B</u> Chemical Data Final Report

Attachment C

Safety & Health Phase-out Report

Attachment D

Data on Fill Materials

Wildwood Ranch 20th & Malang

3505 Conestoga Dr. Fort Wayne, IN 46808 260.483.4759 algreatlakes.com

To: ENVIRONMENTAL QUALITY MGMT 1800 CARILLON BLVD CINCINNATI, OH 45240 For: ORONOGO

Field: JIMMER TPSL 001

SOIL TEST REPORT

Date Received: 6/21/2016

Date Reported: 6/27/2016 Page: 1 of 1

Sample	Lab	Organic	Phospi	horus	Potassium	Magnesium	Calcium	Sodium	Soil	Buffer	CEC		Percent Ca	ntion Satur	ation	
ID	Number	Matter %	Bray-1 Equiv ppm-P	Bray P2 ppm-P	ppm		Ca ppm	Na ppm	рН		meq/100g	% K	% Mg	% Ca	% Н	% Na
SOIL	62462															

VL = Very Low L = LowM = Medium H = HighVH = Very High Soluble Salts mmhos/cm Ammonium NH₄-N ppm Manganese Mn ppm Nitrate NO₃-N ppm Sulfur S Copper Cu Bicarb-P Zinc Iron Boron Sample Zn Fe В Comments ID ppm ppm ppm ppm ppm ppm SOIL 0.3 VL

3505 Conestoga Dr. Fort Wayne, IN 46808 260.483.4759 algreatlakes.com

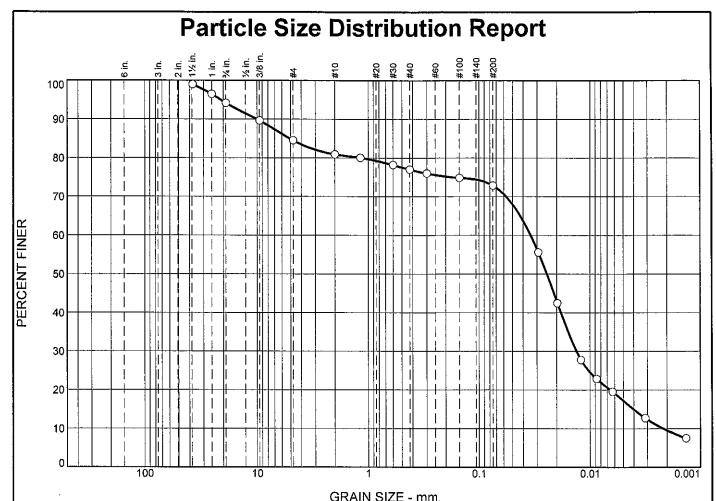
To: ENVIRONMENTAL QUALITY MGMT 1800 CARILLON BLVD

For: ORONOGO

CINCINNATI, OH 45240

USA

JIMMER TPSL 001


Date Received: 06/21/2016

Attn: TROY COOPER

REPORT OF ANALYSIS

Date Reported: 06/27/2016 Page: 1 of 1

		ILLI OILI O	AITALISIS		. , .
Lab Number	Sample ID	Analysis	Result	Unit	Method
62462	SOIL	Organic Matter (Walkley Black)	2.88	%	MSA Part 3 (1996) pp 995-996
		pH (Water)	7.6	Std. Unit	ASTM D4972-01

% +3"	% Gı	avei	% Sand			% Fines		
76 + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
		9.6	3.7	3.9	4.1	55.7	17.2	

SIZE FINER PERCENT (X=NO) 37.5mm 99.0 25.4mm 96.5 19mm 94.2 9.5mm 89.7 #4 84.6 #10 80.9 #16 80.1 #30 78.2 #40 77.0 #50 76.0 #100 74.8 #200 72.9 0.0293 mm. 55.6 0.0197 mm. 0.0293 mm. 0.0121 mm. 27.8 0.0087 mm. 0.0087 mm. 0.0062 mm. 19.5 0.0031 mm. 12.8 0.0013 mm. 7.5 7.5	SIEVE	PERCENT	SPEC.*	PASS?
25.4mm 96.5 19mm 94.2 9.5mm 89.7 #4 84.6 #10 80.9 #16 80.1 #30 78.2 #40 77.0 #50 76.0 #100 74.8 #200 72.9 0.0293 mm. 55.6 0.0197 mm. 42.5 0.0121 mm. 0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	SIZE	FINER	PERCENT	(X=NO)
19mm 94.2 9.5mm 89.7 #4 84.6 #10 80.9 #16 80.1 #30 78.2 #40 77.0 #50 76.0 #100 74.8 #200 72.9 0.0293 mm. 55.6 0.0197 mm. 42.5 0.0121 mm. 27.8 0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	37.5mm	99.0		
9.5mm 89.7 #4 84.6 #10 80.9 #16 80.1 #30 78.2 #40 77.0 #50 76.0 #100 74.8 #200 72.9 0.0293 mm. 55.6 0.0197 mm. 42.5 0.0121 mm. 0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	25.4mm	96.5		
#4 84.6 #10 80.9 #16 80.1 #30 78.2 #40 77.0 #50 76.0 #100 74.8 #200 72.9 0.0293 mm. 55.6 0.0197 mm. 42.5 0.0121 mm. 27.8 0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	19mm	94.2		
#10	9.5mm	89.7		
#16	#4	84.6		
#30 78.2 #40 77.0 #50 76.0 #100 74.8 #200 72.9 0.0293 mm. 55.6 0.0197 mm. 42.5 0.0121 mm. 27.8 0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	#10	80.9		
#40 77.0 #50 76.0 #100 74.8 #200 72.9 0.0293 mm. 55.6 0.0197 mm. 42.5 0.0121 mm. 27.8 0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	#16	80.1		
#50 76.0 #100 74.8 #200 72.9 0.0293 mm. 55.6 0.0197 mm. 42.5 0.0121 mm. 27.8 0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	#30	78.2		
#100 74.8 #200 72.9 0.0293 mm. 55.6 0.0197 mm. 42.5 0.0121 mm. 27.8 0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	#40	77.0		
#200 72.9 0.0293 mm. 55.6 0.0197 mm. 42.5 0.0121 mm. 27.8 0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	#50	76.0		
0.0293 mm. 55.6 0.0197 mm. 42.5 0.0121 mm. 27.8 0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	#100	74.8		
0.0197 mm. 42.5 0.0121 mm. 27.8 0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	#200	72.9		
0.0121 mm, 0.0087 mm. 0.0062 mm. 0.0031 mm. 22.8 0.0031 mm. 12.8	0.0293 mm.	55.6		
0.0087 mm. 22.8 0.0062 mm. 19.5 0.0031 mm. 12.8	0.0197 mm.	42.5		
0.0062 mm. 19.5 0.0031 mm. 12.8	0.0121 mm.	27.8		
0.0031 mm. 12.8	0.0087 mm,	22.8		
	0.0062 mm,	19.5		
0.0013 mm. 7.5	0.0031 mm.	12.8		
) 1	0.0013 mm.	7.5		

Grayish Brown S	Soil Description Silty Clay with Sand					
PL= 23	Atterberg Limits	<u>s</u> PI= 5				
D ₉₀ = 9.9805 D ₅₀ = 0.0246 D ₁₀ = 0.0021	Coefficients D ₈₅ = 5.0621 D ₃₀ = 0.0133 C _u = 16.08	D ₆₀ = 0.0343 D ₁₅ = 0.0040 C _c = 2.41				
USCS= CL-ML Classification AASHTO= A-4(2)						
	<u>Remarks</u>					

* (no specification provided)

Location: Channel - Tpsl 001

Date: 6/22/2016

PALMERTON & PARRISH, INC. Springfield, MO Client: Environmental Quality Management, Inc.

Project: Newton County Lead

Project No: 235172

Figure

Report Number F16216-0286 Account Number 99990

3505 Conestoga Dr. Fort Wayne, IN 46808 260.483.4759 algreatlakes.com

Purchase Order: 216-0286

To: ENVIRONMENTAL QUALITY MGMT 1800 CARILLON BLVD CINCINNATI, OH 45240 For: ORONOGO 30319.0001

JIMMER

PD VISA

Date Received: 8/3/2016

Date Reported: 8/5/2016 Page: 1 of 1

SOIL TEST REPORT

Sample	Lab	Organic	Phospi	horus	Potassium	Magnesium	Calcium	Sodium	Soil	Buffer	CEC		Percent Ca	ation Satu	ation	
ID	Number	Matter %	Bray-1 Equiv ppm-P	Bray P2 ppm-P	ppm	Mg ppm	Ca ppm	Na ppm	рН		meq/100g	% K	% Mg	% Ca	% Н	% Na
TPSL 002	45637															

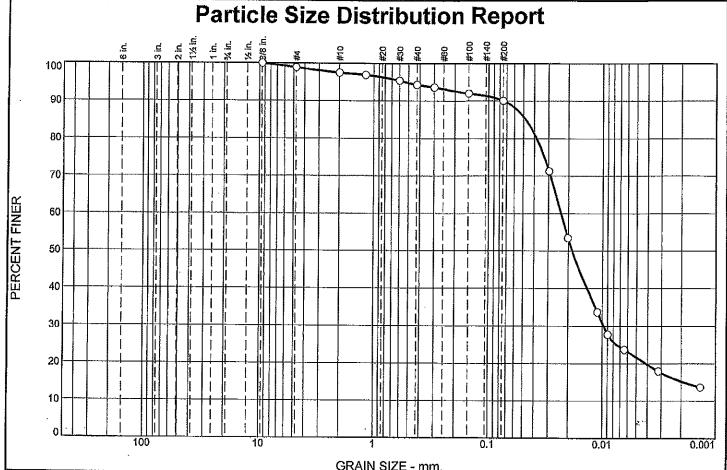
					VL = Very L	ow $L = Low$	M = Medi	um $H = Hightarrow$	gh <i>VH</i> = Ve	ry High		
Sample ID	Sulfur S ppm	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts mmhos/cm	Nitrate NO ₃ -N ppm	Ammonium NH ₄ -N ppm	Bicarb-P P ppm		Comments
TPSL 002							0.1 vı					

3505 Conestoga Dr. Fort Wayne, IN 46808 260.483.4759 algreatlakes.com

To: ENVIRONMENTAL QUALITY MGMT 1800 CARILLON BLVD CINCINNATI, OH 45240 USA For: ORONOGO 30319.0001

JIMMER

P.O. Number:


Attn: TROY COOPER

REPORT OF ANALYSIS

Date Received: 08/03/2016

Date Reported: 08/05/2016 Page: 1 of 1

Lab Number	Sample ID	Analysis	Result	Unit	Method
45637	TPSL 002	Organic Matter (Walkley Black)	4.30	%	MSA Part 3 (1996) pp 995-996
		pH (Water)	5.3	Std. Unit	ASTM D4972-01

GRAIN SIZE - mm. % Gravel 20-351. 25-50% % Fines 10-30 % Sand % +3" Coarse Coarse Fine Medium Fine Silt Clay 0.0 0.0 1.1 1.4 3.2 4.3 21.7 68.3

	SIEVE	PERCENT	SPEC.*	PASS?
	// SIZE	FINER	PERCENT	(X=NO)
31	= 9.5mm	100.0		
Ş.	711 = #4=4761	vn 98.9	specs May part Size	
6	#10	97.5	10/GL	
•	#16	96.9	Max fine	12111 V
	#30	95.4	Size	0014
	#40	94.3	A ' A "	
	#50	93.6	, 971.fin 14"sc	MON
	#100	91.9		
	#200	90.0	1/4/"SO	reen
	0.0297 mm,	71.3	, ,	
	0.0202 mm.	53.5		
	0.0111 mm.	33.7		
	0.0090 mm.	27.8		
	0.0064 mm.	23.8		
	0.0032 mm.	18.0		
	0.0014 mm,	13.7		
	1			

	Soil Description
8 TDark Brown Le	an Clay

(no specification provided)

Location: Bulk Sample Sample Number: JIM32118-4

0.

Date:

PALMERTON & PARRISH, INC. Springfield, MO Client: Environmental Quality Management

Project: Oronogo Project

Project No: 236676

Figure

ALS Group, USA

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order: 18031400

 Sample ID:
 JIM32118-1
 Lab ID: 18031400-02

Collection Date: 3/21/2018 09:00 AM Matrix: SOIL

Analyses	Result	Qual MDL	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS		Method: SW8082	4	Prep: SW35	46 / 3/23/18	Analyst: KB
Aroclor 1016	U	0.027	0.079	mg/Kg-dry	1	3/26/2018 14:23
Aroclor 1221	υ	0.027	0.079	mg/Kg-dry	1	3/26/2018 14:23
Aroclor 1232	U	0.027	0.079	mg/Kg-dry	1	3/26/2018 14:23
Aroclor 1242	U	0.027	0.079	mg/Kg-dry	1	3/26/2018 14:23
Aroclor 1248	U	0.027	0.079	mg/Kg-dry	1	3/26/2018 14:23
Aroclor 1254	U	0.022	0.079	mg/Kg-dry	1	3/26/2018 14:23
Aroclor 1260	U	0.022	0.079	mg/Kg-dry	1	3/26/2018 14:23
Surr: Decachlorobiphenyl	76. <i>4</i>		40-140	%REC	1	3/26/2018 14:23
Surr: Tetrachloro-m-xylene	73.8		45-124	%REC	1	3/26/2018 14:23
PESTICIDES		Method: SW8081A		Prep: SW35	46 / 3/23/18	Analyst: KB
4,4'-DDD	U	0.0013	0.012	mg/Kg-dry	1	3/25/2018 21:05
4,4'-DDE	U	0.0016	0.012	mg/Kg-dry	1	3/25/2018 21:05
4,4'-DDT	U	0.0017	0.012	mg/Kg-dry	1	3/25/2018 21:05
Aldrin	U	0.00086	0.012	mg/Kg-dry	1	3/25/2018 21:05
alpha-BHC	U	0.0011	0.012	mg/Kg-dry	1	3/25/2018 21:05
alpha-Chlordane	Ü	0.0012	0.012	mg/Kg-dry	1	3/25/2018 21:05
beta-BHC	U	0.0011	0.012	mg/Kg-dry	1	3/25/2018 21:05
Chlordane, Technical	U	0.012	0.029	mg/Kg-dry	1	3/25/2018 21:05
delta-BHC	Ü	0.0012	0.012	mg/Kg-dry	1	3/25/2018 21:05
Dieldrin	U	0.0013	0.012	mg/Kg-dry	1	3/25/2018 21:05
Endosulfan I	U	0,0015	0.012	mg/Kg-dry	1	3/25/2018 21:05
Endosulfan II	υ	0.0010	0.012	mg/Kg-dry	1	3/25/2018 21:05
Endosulfan sulfate	Ū	0,0011	0.012	mg/Kg-dry	1	3/25/2018 21:05
Endrin	Ū	0,0012	0.012	mg/Kg-dry	1	3/25/2018 21:05
Endrin aldehyde	Ū	0.0021	0.012	mg/Kg-dry	1	3/25/2018 21:05
Endrin ketone	U	0.0010	0.012	mg/Kg-dry	1	3/25/2018 21:05
gamma-BHC (Lindane)	Ū	0.0011	0.012	mg/Kg-dry	1	3/25/2018 21:05
gamma-Chlordane	Ü	0.0015	0.012	mg/Kg-dry	1	3/25/2018 21:05
Heptachlor	Ū	0.00088	0.012	mg/Kg-dry	1	3/25/2018 21:05
Heptachlor epoxide	Ū	0.0011	0.012	mg/Kg-dry	1	3/25/2018 21:05
Methoxychlor	Ū	0.0015	0.012	mg/Kg-dry	1	3/25/2018 21:05
Toxaphene	Ü	0.013	0.071	mg/Kg-dry	1	3/25/2018 21:05
Surr: Decachlorobiphenyl	76.9	010.10	50-150	%REC	1	3/25/2018 21:05
			50-150	%REC	1	3/25/2018 21:05
Surr: Tetrachloro-m-xylene USC MERCURY BY CVAA	0.1	Method: SW7471B		Prep: SW7471 / 3/27/18		Analyst: RSH
	,\ 0.025	0.0022	0.022	mg/Kg-dry	1	3/28/2018 12:28
METALS ANALYSIS BY ICP		Method: SW846 60	10C	Prep: SW30	50B / 3/27/18	Analyst: HBA

Note: See Qualifiers page for a list of qualifiers and their definitions.

Date: 30-Mar-18

Date: 30-Mar-18

Client:

Environmental Quality Management, Inc.

Project:

Oronogo

Sample ID: JIM32118-1

Collection Date: 3/21/2018 09:00 AM

Work Order: 18031400

Lab ID: 18031400-02

Matrix: SOIL

PANGA	Analyses	TH0501	R8L THQ=1.0	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
	Aluminum	7700	77000	7,800		0.13	0.83	mg/Kg-dry	1	3/28/2018 07:36
	Antimony	·		Ū		0.14	0.42	mg/Kg-dry	1	3/28/2018 07:36
	Arsenic	0.68	0.68	11		0.11	0.42	mg/Kg-dry	1	3/28/2018 07:36
	Barium	1500	15000	99		0.17	0.42	mg/Kg-dry	1	3/28/2018 07:36
	Beryllium	10	160	0.64		0.013	0.17	mg/Kg-dry	1	3/28/2018 07:36
40	Cadmium	7.1	7/	0.15	J	0.040	0.83	mg/Kg-dry	1	3/28/2018 07:36
, 0	Chromium	1800004	180000	¥ 34		0.023	0.42	mg/Kg-dry	1	3/28/2018 21:04
	Cobalt	2.3	2.3	7.6		0.033	0.42	mg/Kg-dry	1	3/28/2018 07:36
	Copper	310	3100	4.9		0.18	0.83	mg/Kg-dry	1	3/28/2018 07:36
Z	Iron 2	5500	55000	25,000		5.0	67	mg/Kg-dry	10	3/28/2018 20:58
400	Lead	400	400	25		0.088	0.42	mg/Kg-dry	1	3/28/2018 07:36
	Manganese	180	1800	510		0.025	0.42	mg/Kg-dry	1	3/28/2018 21:04
	Nickel	UT	a7044	3.4		0.17	0.42	mg/Kg-dry	1	3/28/2018 07:36
	Selenium	39	390	1.7		0.23	0.83	mg/Kg-dry	1	3/28/2018 07:36
	Silver	<u> </u>	•	U		0.052	0.42	mg/Kg-dry	1	3/28/2018 07:36
	Thallium			U		0.35	0.83	mg/Kg-dry	1	3/28/2018 07:36
	Vanadium	39	390	80		0.043	0.42	mg/Kg-dry	1	3/28/2018 07:36
(140D)	Zinc	2300	Z3000	39		0.067	0.83	mg/Kg-dry	1	3/28/2018 07:36
5	SEMI-VOLAT	ILE ORGANIC	COMPOUNDS		Meth	nod: SW846 82	270D	Prep: SW3546 / 3/26/18		Analyst: RS
	1,1`-Biphenyl			U		0.0062	0.038	mg/Kg-dry	1	3/27/2018 14:19
	1,2,4,5-Tetrac	chlorobenzene		U		0.030	0.38	mg/Kg-dry	1	3/27/2018 14:19
	2,3,4,6-Tetrac	chlorophenol		U		0.010	0.077	mg/Kg-dry	1	3/27/2018 14:19
	2,4,5-Trichlore	ophenol		U		0.010	0.038	mg/Kg-dry	1	3/27/2018 14:19
	2,4,6-Trichlore	ophenol		U		0.010	0.038	mg/Kg-dry	1	3/27/2018 14:19
	2,4-Dichloropi	henol		U		0.0080	0.038	mg/Kg-dry	1	3/27/2018 14:19
	2,4-Dimethylp	henol		U		0.0078	0.038	mg/Kg-dry	1	3/27/2018 14:19
	2,4-Dinitrophe	enol		U		0.021	0.038	mg/Kg-dry	1	3/27/2018 14:19
	2,4-Dinitrotolu	iene		U		0.010	0.038	mg/Kg-dry	1	3/27/2018 14:19
	2,6-Dinitrotolu	iene		U		0.0063	0.038	mg/Kg-dry	1	3/27/2018 14:19
	2-Chloronaph	thalene		U		0.0053	0.0076	mg/Kg-dry	1	3/27/2018 14:19
	2-Chlorophen	ol		U		0.012	0.038	mg/Kg-dry	1	3/27/2018 14:19
	2-Methylnaph	nthalene	711	0.021		0.0039	0.0076	mg/Kg-dry	1	3/27/2018 14:19
	2-Methylphen	ol	~ (U		0.010	0.038	mg/Kg-dry	1	3/27/2018 14:19
	2-Nitroaniline			U		8800.0	0.038	mg/Kg-dry	1	3/27/2018 14:19
	3&4-Methylph	enol		U		0.0077	0.038	mg/Kg-dry	1	3/27/2018 14:19
	3,3'-Dichlorob	enzidine		U		0.0057	0.19	mg/Kg-dry	1	3/27/2018 14:19
	3-Nitroaniline			U		0.0088	0.038	mg/Kg-dry	1	3/27/2018 14:19
	4,6-Dinitro-2-r	nethylphenol		U		0.0096	0.038	mg/Kg-dry	1	3/27/2018 14:19
	4-Chloro-3-me	ethylphenol		U		0.011	0.038	mg/Kg-dry	1	3/27/2018 14:19

See Qualifiers page for a list of qualifiers and their definitions. Note:

x MCL-based SSL

NA- No specific RSL for Nickel. # listed is lowest # of all Nickel comp.

AR Page 4 of 14

ALS Group, USA

Date: 30-Mar-18

Client:

Environmental Quality Management, Inc.

Project:

Oronogo

Sample ID:

ЛМ32118-1

Collection Date: 3/21/2018 09:00 AM

Work Order: 18031400

Lab ID: 18031400-02

Matrix: SOIL

Analyses	的L THO=0.1	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
4-Chloroaniline	1170	U		0.0060	0.077	mg/Kg-dry	1	3/27/2018 14:19
4-Nitroaniline		Ü		0.059	0.19	mg/Kg-dry	1	3/27/2018 14:19
Acenaphthene	3600	0.0092		0.0055	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Acetophenone	5000	U		0.0060	0.038	mg/Kg-dry	1	3/27/2018 14:19
Anthracene	1200	0.0092		0.0054	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Atrazine	1800	U		0.0060	0.038	mg/Kg-dry	1	3/27/2018 14:19
Benzaldehyde		Ū		0.059	0.077	mg/Kg-dry	1	3/27/2018 14:19
Benzo(a)anthracene		Ū		0.0066	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Benzo(a)pyrene		Ū		0.0047	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Benzo(b)fluoranthene		Ū		0.0057	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Benzo(k)fluoranthene		Ū		0.0058	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Bis(2-chloroethoxy)methane		Ū		0.0037	0.038	mg/Kg-dry	1	3/27/2018 14:19
Bis(2-chloroethyl)ether		Ü		0.011	0.038	mg/Kg-dry	1	3/27/2018 14:19
Bis(2-chloroisopropyl)ether		Ū		0.0090	0.038	mg/Kg-dry	1	3/27/2018 14:19
Bis(2-ethylhexyl)phthalate	39	0.070		0.0066	0.038	mg/Kg-dry	1	3/27/2018 14:19
Butyl benzyl phthalate	J (U		0.0065	0.038	mg/Kg-dry	1	3/27/2018 14:19
Caprolactam		U		0.013	0.038	mg/Kg-dry	1	3/27/2018 14:19
Chrysene		Ū		0.0062	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Dibenzo(a,h)anthracene		Ū		0.0041	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Dibenzofuran	7,3	0.026	J	0.0056	0.038	mg/Kg-dry	1	3/27/2018 14:19
Diethyl phthalate	1,5	U	•	0.0058	0.038	mg/Kg-dry	1	3/27/2018 14:19
Dimethyl phthalate		Ū		0.0075	0,038	mg/Kg-dry	1	3/27/2018 14:19
Di-n-butyl phthalate		Ū		0.0070	0.038	mg/Kg-dry	1	3/27/2018 14:19
Di-n-octyl phthalate		U		0.0073	0.038	mg/Kg-dry	1	3/27/2018 14:19
Fluoranthene	240	0.015		0.0037	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Fluorene	240	0.018		0.0055	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Hexachlorobenzene	240	U		0.011	0.038	mg/Kg-dry	1	3/27/2018 14:19
Hexachlorobutadiene ,		Ū		0.021	0.038	mg/Kg-dry	1	3/27/2018 14:19
Hexachlorocyclopentadiene		Ū		0.013	0.038	mg/Kg-dry	1	3/27/2018 14:19
Hexachloroethane		Ū		0.016	0.038	mg/Kg-dry	1	3/27/2018 14:19
Indeno(1,2,3-cd)pyrene		U		0.0053	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Isophorone		Ū		0.0075	0.19	mg/Kg-dry	1	3/27/2018 14:19
Naphthalene	3.8			0.0049	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Nitrobenzene	<i>J.</i> 0	U		0.013	0.19	mg/Kg-dry	1	3/27/2018 14:19
N-Nitrosodi-n-propylamine		Ū		0.0063	0.038	mg/Kg-dry	1	3/27/2018 14:19
N-Nitrosodiphenylamine		U		0.0037	0.038	mg/Kg-dry	1	3/27/2018 14:19
Pentachlorophenol		U		0.014	0.038	mg/Kg-dry	1	3/27/2018 14:19
Phenol		U		0.0095	0.038	mg/Kg-dry	1	3/27/2018 14:19
Pyrene	18D	0.0069	J	0.0014	0.0076	mg/Kg-dry	1	3/27/2018 14:19
Surr: 2,4,6-Tribromopheno		65.8	-	5.55.4	38-92	%REC	1	3/27/2018 14:19

Note:

See Qualifiers page for a list of qualifiers and their definitions.

Date: 30-Mar-18

Client:

Environmental Quality Management, Inc.

Project:

Oronogo

Sample ID:

JIM32118-1

Collection Date: 3/21/2018 09:00 AM

Work Order: 18031400

Lab ID: 18031400-02

Matrix: SOIL

Analyses		Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 2-Fluorobiphenyl		57.0			44-107	%REC	1	3/27/2018 14:19
Surr: 2-Fluorophenol		52.7		•	37-109	%REC	1	3/27/2018 14:19
Surr: 4-Terphenyl-d14		65.2			52-123	%REC	1	3/27/2018 14:19
Surr: Nitrobenzene-d5		49.6			41-94	%REC	1	3/27/2018 14:19
Surr: Phenol-d6		54.3			28-111	%REC	1	3/27/2018 14:19
VOLATILE ORGANIC COMPOUN	NDS		Met	hod: SW8260B		Prep: SW50	35 / 3/23/18	Analyst: AK
Acetone		U		0.043	0.14	mg/Kg-dry	1	3/23/2018 17:37
Surr: 1,2-Dichloroethane-d4		98.0			70-130	%REC	1	3/23/2018 17:37
Surr: 4-Bromofluorobenzene		89.0			70-130	%REC	1	3/23/2018 17:37
Surr: Dibromofluoromethane		92.6			70-130	%REC	1	3/23/2018 17:37
Surr: Toluene-d8		93.8			70-130	%REC	1	3/23/2018 17:37
VOLATILE ORGANIC COMPOUN	NDS		Met	hod: SW8260B				Analyst: EMR
1,1,1-Trichloroethane		U		0.00082	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,1,2,2-Tetrachloroethane		U		0.00028	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,1,2-Trichloroethane		U		0.00040	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,1,2-Trichlorotrifluoroethane		U		0.0011	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,1-Dichloroethane		U		0.0021	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,1-Dichloroethene		U		0.0010	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,2,3-Trichlorobenzene		U		0.00064	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,2,3-Trichloropropane		U		0.00086	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,2,4-Trichlorobenzene		U		0.00076	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,2-Dibromo-3-chloropropane		U		0.0014	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,2-Dibromoethane		U		0.00037	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,2-Dichlorobenzene		U		0.00065	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,2-Dichloroethane		U		0.00037	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,2-Dichloropropane		U		0.00046	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,3-Dichlorobenzene		U		0.00054	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,4-Dichlorobenzene		U		0.00037	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,4-Dioxane		U		0.045	0.10	mg/Kg-dry	0.873	3/27/2018 12:55
2-Butanone	7.700	0.0099	j	0.0020	0.010	mg/Kg-dry	0.873	3/27/2018 12:55
2-Hexanone	01 -	U		0.0010	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
4-Methyl-2-pentanone		U		0.00084	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Benzene		U		0.00054	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Bromochloromethane		U		0.00051	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Bromodichloromethane		U		0.00033	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Bromoform		U		0.00032	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Bromomethane		U		0.00075	0.010	mg/Kg-dry	0.873	3/27/2018 12:55
Carbon disulfide		U		0.00058	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Carbon tetrachloride		U		0.00086	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55

Date: 30-Mar-18

Client:

Environmental Quality Management, Inc.

Project: Sample ID: Oronogo JIM32118-1

Collection Date: 3/21/2018 09:00 AM

Work Order: 18031400

Lab ID: 18031400-02

Matrix: SOIL

Analyses	Result Qua	al MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Chlorobenzene	U	0.00033	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Chloroethane	U	0.00065	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Chloroform	U	0.00031	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Chloromethane	U	0.00048	0.010	mg/Kg-dry	0.873	3/27/2018 12:55
cis-1,2-Dichloroethene	U	0.00050	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
cis-1,3-Dichloropropene	U	0.00027	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Cyclohexane	U	0.0032	0.010	mg/Kg-dry	0.873	3/27/2018 12:55
Dibromochloromethane	U	0.00049	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Dichlorodifluoromethane	U	0.0011	0.010	mg/Kg-dry	0.873	3/27/2018 12:55
Ethylbenzene	U	0.00062	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Isopropylbenzene	U	0.00066	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
m,p-Xylene	U	0.0013	0.0026	mg/Kg-dry	0.873	3/27/2018 12:55
Methyl acetate	U	0.0013	0.010	mg/Kg-dry	0.873	3/27/2018 12:55
Methyl tert-butyl ether	U	0.00024	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Methylcyclohexane	U	0.0015	0.010	mg/Kg-dry	0.873	3/27/2018 12:55
Methylene chloride	U	0.00089	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
o-Xylene	U	0.00049	0.0026	mg/Kg-dry	0.873	3/27/2018 12:55
Styrene	U	0.00042	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Tetrachloroethene	U	0.00092	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Toluene	U	0.00058	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
trans-1,2-Dichloroethene	U	0.00042	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
trans-1,3-Dichloropropene	U	0.00030	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Trichloroethene	U	0.00075	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Trichlorofluoromethane	Ū	0.00074	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Vinyl chloride	Ū	0.00073	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
1,2-Dichloroethene, Total	Ü	0.00091	0.010	mg/Kg-dry	0.873	3/27/2018 12:55
1,3-Dichloropropene, Total	U	0.00057	0.016	mg/Kg-dry	0.873	3/27/2018 12:55
Xylenes, Total	Ü	0.0018	0.0052	mg/Kg-dry	0.873	3/27/2018 12:55
Surr: 1,2-Dichloroethane-d4	108		83-132	%REC	0.873	3/27/2018 12:55
Surr: 4-Bromofluorobenzene	98.8		83-111	%REC	0.873	3/27/2018 12:55
Surr: Dibromofluoromethane	103		77-125	%REC	0.873	3/27/2018 12:55
Surr: Toluene-d8	96.8		86-108	%REC	0.873	3/27/2018 12:55
MOISTURE		Method: SW3550C				Analyst: NW
Moisture	16	0.025	0.050	% of sample	. 1	3/27/2018 14:50
CHLORINATED HERBICIDES		Method: SW8151				Analyst: ALS
2,4,5-T	U	0.0017	0.0039	mg/Kg-dry	1	3/29/2018 23:26
2,4,5-TP (Silvex)	U	0.0020	0.0039	mg/Kg-dry	1	3/29/2018 23:26
2,4-D	U	0.00083	0.0078	mg/Kg-dry	1	3/29/2018 23:26
2,4-DB	υ	0.0011	0.0078	mg/Kg-dry	1	3/29/2018 23:26

Note:

Date: 30-Mar-18

Client:

Note:

Environmental Quality Management, Inc.

Project:

Oronogo

Sample ID:

ЛМ32118-1

Collection Date: 3/21/2018 09:00 AM

Work Order: 18031400

Lab ID: 18031400-02

Matrix: SOIL

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Dalapon	U	0.0014	0.0039	mg/Kg-dry	1	3/29/2018 23:26
Dicamba	Ų	0.0015	0.0039	mg/Kg-dry	1	3/29/2018 23:26
Dinoseb	υ	0.0017	0.0039	mg/Kg-dry	1	3/29/2018 23:26
MCPA	U	0.12	0.78	mg/Kg-dry	1	3/29/2018 23:26
MCPP	U	0.19	0.78	mg/Kg-dry	1	3/29/2018 23:26
Surr: DCAA	9 5.9		30-150	%REC	1	3/29/2018 23:26

Date: 30-Mar-18

Client:

Environmental Quality Management, Inc.

Project: Sample ID: Oronogo

JIM32118-2

Collection Date: 3/21/2018 09:50 AM

Work Order: 18031400

Lab ID: 18031400-03

Matrix: SOIL

Analyses		Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			Meth	od: SW8082		Prep: SW35	46 / 3/23/18	Analyst: KB
Aroclor 1016		U		0.027	0.078	mg/Kg-dry	1	3/26/2018 15:06
Aroclor 1221		U		0.027	0.078	mg/Kg-dry	1	3/26/2018 15:06
Aroclor 1232		U		0.027	0.078	mg/Kg-dry	1	3/26/2018 15:06
Aroclor 1242		U		0.027	0.078	mg/Kg-dry	1	3/26/2018 15:06
Aroclor 1248		U		0.027	0.078	mg/Kg-dry	1	3/26/2018 15:06
Arodor 1254		Ų		0.022	0.078	mg/Kg-dry	1	3/26/2018 15:06
Aroclor 1260		Ų		0.022	0.078	mg/Kg-dry	1	3/26/2018 15:06
Surr: Decachlorobiphenyl		89.4			40-140	%REC	1	3/26/2018 15:06
Surr: Tetrachloro-m-xylene		89.8			45-124	%REC	1	3/26/2018 15:06
PESTICIDES			Meth	od: SW8081A		Prep: SW35	46 / 3/23/18	Analyst: KB
4,4'-DDD		Ų		0.0013	0.012	mg/Kg-dry	1	3/25/2018 21:58
4,4'-DDE		υ		0.0016	0.012	mg/Kg-dry	1	3/25/2018 21:58
4,4'-DDT		U		0.0017	0.012	mg/Kg-dry	1	3/25/2018 21:58
Aldrin		U		0.00085	0.012	mg/Kg-dry	1	3/25/2018 21:58
alpha-BHC		U		0.0011	0.012	mg/Kg-dry	1	3/25/2018 21:58
alpha-Chfordane		U		0.0012	0.012	mg/Kg-dry	1	3/25/2018 21:58
beta-BHC		υ		0.0011	0.012	mg/Kg-dry	1	3/25/2018 21:58
Chlordane, Technical		υ		0.012	0.029	mg/Kg-dry	1	3/25/2018 21:58
delta-BHC		U		0.0012	0.012	mg/Kg-dry	1	3/25/2018 21:58
Dieldrin		U		0.0013	0.012	mg/Kg-dry	1	3/25/2018 21:58
Endosulfan I		U		0.0014	0.012	mg/Kg-dry	1	3/25/2018 21:58
Endosulfan II		U		0.0010	0.012	mg/Kg-dry	1	3/25/2018 21:58
Endosulfan sulfate		U		0.0011	0.012	mg/Kg-dry	1	3/25/2018 21:58
Endrin		U		0.0012	0.012	mg/Kg-dry	1	3/25/2018 21:58
Endrin aldehyde		U		0.0020	0.012	mg/Kg-dry	1	3/25/2018 21:58
Endrin ketone		U		0.0010	0.012	mg/Kg-dry	1	3/25/2018 21:58
gamma-BHC (Lindane)		U		0.0011	0.012	mg/Kg-dry	1	3/25/2018 21:58
gamma-Chlordane		U		0.0014	0.012	mg/Kg-dry	1	3/25/2018 21:58
Heptachlor		U		0.00087	0.012	mg/Kg-dry	1	3/25/2018 21:58
Heptachlor epoxide		U		0.0011	0.012	mg/Kg-dry	1	3/25/2018 21:58
Methoxychlor		U		0.0015	0.012	mg/Kg-dry	1	3/25/2018 21:58
Toxaphene		U		0.013	0.070	mg/Kg-dry	1	3/25/2018 21:58
Surr: Decachlorobiphenyl		92.0			50-150	%REC	1	3/25/2018 21:58
Surr: Tetrachloro-m-xylene		103			50-150	%REC	1	3/25/2018 21:58
MERCURY BY CVAA			Meth	od: SW7471B		Prep: SW74	71 / 3/27/18	Analyst: RSH
Mercury	1.1	0.023		0.0022	0.022	mg/Kg-dry	1	3/28/2018 12:36
METALS ANALYSIS BY ICP			Meth	od: SW846 60	10C	Prep: SW30	50B / 3/27/18	Analyst: HBA

Note:

Date: 30-Mar-18

Client:

Environmental Quality Management, Inc.

Project: Sample ID: Oronogo

ЛМ32118-2

Collection Date: 3/21/2018 09:50 AM

Work Order: 18031400

Lab ID: 18031400-03

Matrix: SOIL

Analyses	THQ=0.1	THQ=10 R	esult	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Aluminum	*7700	77000	7,600		0.13	0.85	mg/Kg-dry	1	3/28/2018 07:43
Antimony	1 100	7	U		0.14	0.43	mg/Kg-dry	1	3/28/2018 07:43
Arsenic	0.08	0.68	6.5		0.11	0.43	mg/Kg-dry	1	3/28/2018 07:43
Barium	1500	1,5000	83		0.17	0.43	mg/Kg-dry	1	3/28/2018 07:43
Beryllium	16	160	0.59		0.014	0.17	mg/Kg-dry	1	3/28/2018 07:43
Cadmium	71	71	0.20	J	0.041	0.85	mg/Kg-dry	1	3/28/2018 07:43
Chromium	18000	18000	23		0.024	0.43	mg/Kg-dry	1	3/28/2018 21:10
Cobalt	2.3	23	5.3		0.034	0.43	mg/Kg-dry	1	3/28/2018 07:43
Copper	30	3100	4.9		0.19	0.85	mg/Kg-dry	1	3/28/2018 07:43
Iron	5500	55200	14,000		0.51	6.8	mg/Kg-dry	1	3/28/2018 07:43
Lead	400	400	17		0.090	0.43	mg/Kg-dry	1	3/28/2018 07:43
Manganese	150	1800	240		0.026	0.43	mg/Kg-dry	1	3/28/2018 21:10
Nickel	le7	470	3.1		0.17	0.43	mg/Kg-dry	1	3/28/2018 07:43
Selenium	39	390	1.7		0.24	0.85	mg/Kg-dry	1	3/28/2018 07:43
Silver	7 (U		0.053	0.43	mg/Kg-dry	1	3/28/2018 07:43
Thallium			U		0.36	0.85	mg/Kg-dry	1	3/28/2018 07:43
Vanadium	39	390	50		0.044	0.43	mg/Kg-dry	1	3/28/2018 07:43
Zinc	39 2300	23001) 40		0.068	0.85	mg/Kg-dry	1	3/28/2018 07:43
SEMI-VOLATIL	E ORGANIC C	OMPOUNDS		Met	hod: SW846 8:	270D	Prep: SW35	46 / 3/26/18	Analyst: RS
1,1`-Biphenyl			U		0.0064	0.039	mg/Kg-dry	1	3/27/2018 14:43
1,2,4,5-Tetrach	lorobenzene		U		0.031	0.39	mg/Kg-dry	1	3/27/2018 14:43
2,3,4,6-Tetrach	lorophenol		U		0.010	0.079	mg/Kg-dry	1	3/27/2018 14:43
2,4,5-Trichloro	phenol		U		0.011	0.039	mg/Kg-dry	1	3/27/2018 14:43
2,4,6-Trichloro	phenol		U		0.010	0.039	mg/Kg-dry	1	3/27/2018 14:43
2,4-Dichlorophe	enol		U		0.0083	0.039	mg/Kg-dry	1	3/27/2018 14:43
2,4-Dimethylph	enol		U		0.0081	0.039	mg/Kg-dry	1	3/27/2018 14:43
2,4-Dinitropher	ıol		U		0.021	0.039	mg/Kg-dry	1	3/27/2018 14:43
2,4-Dinitrotolue	ene		U		0.010	0.039	mg/Kg-dry	1	3/27/2018 14:43
2,6-Dinitrotolue	ene		U		0.0065	0.039	mg/Kg-dry	1	3/27/2018 14:43
2-Chloronaphth	nalene		U		0,0055	0.0079	mg/Kg-dry	1	3/27/2018 14:43
2-Chloropheno	1	ì	U		0.012	0.039	mg/Kg-dry	1	3/27/2018 14:43
2-Methylnapht	thalene	24	0.0047	J	0.0040	0.0079	mg/Kg-dry	1	3/27/2018 14:43
2-Methylpheno	l	~ /	U		0.011	0.039	mg/Kg-dry	1	3/27/2018 14:43
2-Nitroaniline			U		0.0090	0.039	mg/Kg-dry	1	3/27/2018 14:43
3&4-Methylphe	nol		U		0.0079	0.039	mg/Kg-dry	1	3/27/2018 14:43
3,3'-Dichlorobe	enzidine		U		0.0059	0.20	mg/Kg-dry	1	3/27/2018 14:43
3-Nitroaniline			U		0.0090	0.039	mg/Kg-dry	1	3/27/2018 14:43
4,6-Dinitro-2-m	ethylphenol		U		0.0099	0.039	mg/Kg-dry	1	3/27/2018 14:43
4-Chloro-3-met	thylphenol		U		0.011	0.039	mg/Kg-dry	1	3/27/2018 14:43

Date: 30-Mar-18

Client:

Environmental Quality Management, Inc.

Project:

Oronogo

Sample ID:

JIM32118-2

Collection Date: 3/21/2018 09:50 AM

Work Order: 18031400

Lab ID: 18031400-03

Matrix: SOIL

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
4-Chloroaniline	U	0.0062	0.079	mg/Kg-dry	1	3/27/2018 14:43
4-Nitroaniline	U	0.061	0.20	mg/Kg-dry	1	3/27/2018 14:43
Acenaphthene	U	0.0057	0.0079	mg/Kg-dry	1	3/27/2018 14:43
Acetophenone	U	0.0062	0.039	mg/Kg-dry	1	3/27/2018 14:43
Anthracene	U	0.0056	0.0079	mg/Kg-dry	1	3/27/2018 14:43
Atrazine	U	0.0062	0.039	mg/Kg-dry	1	3/27/2018 14:43
Benzaldehyde	U	0.061	0.079	mg/Kg-dry	1	3/27/2018 14:43
Benzo(a)anthracene	U	0.0068	0.0079	mg/Kg-dry	1	3/27/2018 14:43
Benzo(a)pyrene	U	0.0048	0.0079	mg/Kg-dry	1	3/27/2018 14:43
Benzo(b)fluoranthene	U	0.0059	0.0079	mg/Kg-dry	1	3/27/2018 14:43
Benzo(k)fluoranthene	U	0.0060	0.0079	mg/Kg-dry	1	3/27/2018 14:43
Bis(2-chloroethoxy)methane	U	0.0038	0.039	mg/Kg-dry	1	3/27/2018 14:43
Bis(2-chloroethyl)ether	U	0.011	0.039	mg/Kg-dry	1	3/27/2018 14:43
Bis(2-chloroisopropyl)ether	U	0.0092	0.039	mg/Kg-dry	1	3/27/2018 14:43
Bis(2-ethylhexyl)phthalate	U	0.0068	0.039	mg/Kg-dry	1	3/27/2018 14:43
Butyl benzyl phthalate	U	0.0067	0.039	mg/Kg-dry	1	3/27/2018 14:43
Caprolactam	U	0.013	0.039	mg/Kg-dry	1	3/27/2018 14:4:
Chrysene	U	0.0064	0.0079	mg/Kg-dry	1	3/27/2018 14:4:
Dibenzo(a,h)anthracene	U	0.0043	0.0079	mg/Kg-dry	1	3/27/2018 14:4:
Dibenzofuran	U	0.0058	0.039	mg/Kg-dry	1	3/27/2018 14:4:
Diethyl phthalate	U	0.0060	0.039	mg/Kg-dry	1	3/27/2018 14:43
Dimethyl phthalate	U	0.0077	0.039	mg/Kg-dry	1	3/27/2018 14:43
Di-n-butyl phthalate	U	0.0072	0.039	mg/Kg-dry	1	3/27/2018 14:43
Di-n-octyl phthalate	U	0.0076	0.039	mg/Kg-dry	1	3/27/2018 14:43
Fluoranthene	U	0.0038	0.0079	mg/Kg-dry	1	3/27/2018 14:43
Fluorene	U	0.0057	0.0079	mg/Kg-dry	1	3/27/2018 14:43
Hexachlorobenzene	U	0.011	0.039	mg/Kg-dry	1	3/27/2018 14:43
Hexachlorobutadiene	U	0.021	0.039	mg/Kg-dry	1	3/27/2018 14:43
Hexachlorocyclopentadiene	U	0.013	0.039	mg/Kg-dry	1	3/27/2018 14:43
Hexachloroethane	U	0.016	0.039	mg/Kg-dry	1	3/27/2018 14:43
Indeno(1,2,3-cd)pyrene	U	0.0055	0.0079	mg/Kg-dry	1	3/27/2018 14:4:
Isophorone	U	0.0077	0.20	mg/Kg-dry	1	3/27/2018 14:43
Naphthalene	ប	0.0050	0.0079	mg/Kg-dry	1	3/27/2018 14:4:
Nitrobenzene	ប	0.013	0.20	mg/Kg-dry	1	3/27/2018 14:4:
N-Nitrosodi-n-propylamine	U	0.0065	0.039	mg/Kg-dry	1	3/27/2018 14:4:
N-Nitrosodiphenylamine	U	0.0038	0.039	mg/Kg-dry	1	3/27/2018 14:43
Pentachlorophenol	U	0.015	0.039	mg/Kg-dry	1	3/27/2018 14:43
Phenol	U	0.0098	0.039	mg/Kg-dry	1	3/27/2018 14:43
Pyrene	U	0.0014	0.0079	mg/Kg-dry	1	3/27/2018 14:4:
Surr: 2,4,6-Tribromophenol	60.0		38-92	%REC	1	3/27/2018 14:43

Note:

Date: 30-Mar-18

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order: 18031400

 Sample ID:
 JIM32118-2
 Lab ID: 18031400-03

Collection Date: 3/21/2018 09:50 AM Matrix: SOIL

Analyses	Result	Qual MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 2-Fluorobiphenyl	51.3		44-107	%REC	1	3/27/2018 14:43
Surr: 2-Fluorophenol	48.7		37-109	%REC	1	3/27/2018 14:43
Surr: 4-Terphenyl-d14	63.7		52-123	%REC	1	3/27/2018 14:43
Surr: Nitrobenzene-d5	46.1		41-94	%REC	1	3/27/2018 14:43
Surr: Phenol-d6	47.9		28-111	%REC	1	3/27/2018 14:43
VOLATILE ORGANIC COMPOUNDS	Method: SW8260B		3	Prep: SW50	35 / 3/23/18	Analyst: AK
Acetone	U	0.043	0.14	mg/Kg-dry	1	3/23/2018 18:02
Surr: 1,2-Dichloroethane-d4	97.2		70-130	%REC	1	3/23/2018 18:02
Surr: 4-Bromofluorobenzene	92.0		70-130	%REC	1	3/23/2018 18:02
Surr: Dibromofluoromethane	92.6		70-130	%REC	1	3/23/2018 18:02
Surr: Toluene-d8	92.0		70-130	%REC	1	3/23/2018 18:02
VOLATILE ORGANIC COMPOUNDS		Method: SW8260E	3			Analyst: EMR
1,1,1-Trichloroethane	U	0.00088	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,1,2,2-Tetrachloroethane	U	0.00030	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,1,2-Trichloroethane	Ū	0.00043	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,1,2-Trichlorotrifluoroethane	U	0.0012	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,1-Dichloroethane	Ū	0.0023	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,1-Dichloroethene	U	0.0011	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,2,3-Trichlorobenzene	Ū	0,00069	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,2,3-Trichloropropane	Ų	0.00092	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,2,4-Trichlorobenzene	Ü	0.00081	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,2-Dibromo-3-chloropropane	Ü	0.0015	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,2-Dibromoethane	U	0.00040	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,2-Dichlorobenzene	Ū	0.00070	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,2-Dichloroethane	Ū	0,00040	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,2-Dichloropropane	Ū	0,00049	0.0056	mg/Kg-dry	0,933	3/27/2018 13:11
1,3-Dichlorobenzene	Ū	0.00058	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,4-Dichlorobenzene	Ū	0.00040	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,4-Dioxane	Ū	0.049	0.11	mg/Kg-dry	0.933	3/27/2018 13:11
2-Butanone 2700	0.011	0.0021	0.011	mg/Kg-dry	0.933	3/27/2018 13:11
2-Hexanone	Ų	0.0011	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
4-Methyl-2-pentanone	Ū	0.00090	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Benzene	Ü	0.00058	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Bromochloromethane	U	0.00055	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Bromodichloromethane	U	0.00036	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Bromoform	Ū	0.00035	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Bromomethane	Ū	0.00080	0.011	mg/Kg-dry	0.933	3/27/2018 13:11
Carbon disulfide	U	0.00062	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Carbon tetrachloride	U	0.00092	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11

Date: 30-Mar-18

Client:

Environmental Quality Management, Inc.

Project: Sample ID: Oronogo

JIM32118-2

Collection Date: 3/21/2018 09:50 AM

Work Order: 18031400

Lab ID: 18031400-03

Matrix: SOIL

Analyses		Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Chlorobenzene		υ		0.00036	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Chloroethane		υ		0.00070	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Chloroform		U		0.00033	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Chloromethane		U		0.00051	0.011	mg/Kg-dry	0.933	3/27/2018 13:11
cis-1,2-Dichloroethene		U		0.00053	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
cis-1,3-Dichloropropene		U		0.00029	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Cyclohexane		U		0.0034	0.011	mg/Kg-dry	0.933	3/27/2018 13:11
Dibromochloromethane		U		0.00052	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Dichlorodifluoromethane		U		0.0012	0.011	mg/Kg-dry	0.933	3/27/2018 13:11
Ethylbenzene		U		0.00067	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Isopropylbenzene		U		0.00071	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
m,p-Xylene		U		0.0014	0.0028	mg/Kg-dry	0.933	3/27/2018 13:11
Methyl acetate		U		0.0013	0.011	mg/Kg-dry	0.933	3/27/2018 13:11
Methyl tert-butyl ether		U		0.00026	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Methylcyclohexane		U		0.0017	0.011	mg/Kg-dry	0.933	3/27/2018 13:11
Methylene chloride		U		0.00096	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
o-Xylene		U		0.00052	0.0028	mg/Kg-dry	0.933	3/27/2018 13:11
Styrene		U		0.00045	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Tetrachloroethene		U		0.00099	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Toluene	4900	0.00067	J	0.00062	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
trans-1,2-Dichloroethene	, .	U		0.00045	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
trans-1,3-Dichloropropene		U		0.00032	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Trichloroethene		υ		0.00080	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Trichlorofluoromethane		U		0.00079	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Vinyl chloride		υ		0.00078	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
1,2-Dichloroethene, Total		υ		0.00098	0.011	mg/Kg-dry	0.933	3/27/2018 13:11
1,3-Dichloropropene, Total		U		0.00061	0.017	mg/Kg-dry	0.933	3/27/2018 13:11
Xylenes, Total		U		0.0019	0.0056	mg/Kg-dry	0.933	3/27/2018 13:11
Surr: 1,2-Dichloroethane-d4		110			83-132	%REC	0.933	3/27/2018 13:11
Surr: 4-Bromofluorobenzene		102			83-111	%REC	0.933	3/27/2018 13:11
Surr: Dibromofluoromethane		104			77-125	%REC	0.933	3/27/2018 13:11
Surr: Toluene-d8		95.0			86-108	%REC	0.933	3/27/2018 13:11
MOISTURE			N	lethod: SW3550C				Analyst: NW
Moisture		16		0.025	0.050	% of sample	1	3/27/2018 14:50
CHLORINATED HERBICIDES			N	ethod: SW8151				Analyst: ALS
2,4,5-T		U		0.0017	0.0039	mg/Kg-dry	1	3/30/2018 01:00
2,4,5-TP (Silvex)		U		0.0020	0.0039	mg/Kg-dry	1	3/30/2018 01:00
2,4-D		U		0.00083	0.0079	mg/Kg-dry	1	3/30/2018 01:00
2,4-DB		U		0.0011	0.0079	mg/Kg-dry	1	3/30/2018 01:00

Note:

Client:

Note:

Environmental Quality Management, Inc.

Project:OronogoSample ID:ЛМ32118-2

Collection Date: 3/21/2018 09:50 AM

Date: 30-Mar-18

Work Order: 18031400 Lab ID: 18031400-03

Matrix: SOIL

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Dalapon	U	0.0014	0.0039	mg/Kg-dry	1	3/30/2018 01:00
Dicamba	ė U	0.0015	0.0039	mg/Kg-dry	1	3/30/2018 01:00
Dinoseb	U	0.0017	0.0039	mg/Kg-dry	1	3/30/2018 01:00
MCPA	U	0.12	0.79	mg/Kg-dry	1	3/30/2018 01:00
MCPP	U	0.19	0.79	mg/Kg-dry	1	3/30/2018 01:00
Surr: DCAA	106		30-150	%REC	1	3/30/2018 01:00

3505 Conestoga Dr. Fort Wayne, IN 46808 260.483.4759 algreatlakes.com

To: ENVIRONMENTAL QUALITY MGMT.

For: ORONOGO

1800 CARILLON BLVD CINCINNATI, OH 45240

Attn: ANGYE DRAGOTTA

P.O. Number: 30319.0001

Date Received: 03/22/2018

REPORT OF ANALYSIS

Date Reported: 03/27/2018 Page: 1 of 1

Lab						
Number	Sample ID	Analysis	Result	Unit	Method	Standarq
10564	JIM32118-3	Organic Matter (Walkley Black)	1.98	%	MSA Part 3 (1996)	pp 995-996 5-101/
		pH (Water)	7.8	Std. Unit	ASTM D4972-01	5.5 to 7
		Soluble Salt Calc. ppm	64	ppm	mmho/cm x 640	2600 ppm

Wildwood Ranch 20th & Central City Road

19-Oct-2020

Angye Dragotta
Environmental Quality Management, Inc.
1800 Carillon Blvd
Cincinnati, OH 45240

Re: Oronogo Work Order: 20100478

Dear Angye,

ALS Environmental received 1 sample on 06-Oct-2020 10:30 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 52.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely.

Electronically approved by: Bill Carey

Bill Carey

Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 🚴

ALS Group, USA

Date: 19-Oct-20

Client: Environmental Quality Management, Inc.

Project: Oronogo Work Order Sample Summary

Work Order: 20100478

<u>Lab Samp ID Client Sample ID Matrix Tag Number Collection Date Date Received Hold</u>

20100478-01 Wildwood 02 Soil 10/5/2020 08:15 10/6/2020 10:30

Date: 19-Oct-20

Client: Environmental Quality Management, Inc.

QUALIFIERS,

Project: Oronogo
WorkOrder: 20100478

Oronogo
ACRONYMS, UNITS

QF Page 1 of 2

mg/Kg-dry

Milligrams per Kilogram Dry Weight

Qualifier	<u>Description</u>
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
О	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U X	Analyzed but not detected above the MDL
Α	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
E	EPA
SW	SW-846 Update III
Units Reported	Description
% of sample	Percent of Sample
as noted	
/Y Y 1	A CHILL AND AND A STATE OF THE

Date: 19-Oct-20

Date: 19-Oct-20

Client: Environmental Quality Management, Inc.

Project: Oronogo
Work Order: 20100478

Case Narrative

Samples for the above noted Work Order were received on 10/6/2020. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Volatile Organics:

Batch R300509, Method SW8260C, Sample VLCSS1-201016: The LCS recovery was above the upper control limit. All the sample results in the batch were non-detect. No qualification is necessary for this analyte: bromomethane, dichlorodifluoromethane

Extractable Organics:

Batch 165838, Method SW8081A, Sample 20100478-01C MS: The MS recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: Multiple - See QC report.

Batch 165838, Method SW8081A, Sample 20100478-01C MSD: The MSD recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: Multiple - See QC report.

Metals:

No other deviations or anomalies were noted.

Wet Chemistry:

No other deviations or anomalies were noted.

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20100478

 Sample ID:
 Wildwood 02
 Lab ID:
 20100478-01

 Collection Date:
 10/5/2020 08:15 AM
 Matrix:
 SOIL

Date: 19-Oct-20

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	2 Pre	p: SW3546 10/13/20 11:39	Analyst: RM
Aroclor 1016	ND		0.28	mg/Kg-dry	1	10/13/2020 02:12 PM
Aroclor 1221	ND		0.28	mg/Kg-dry	1	10/13/2020 02:12 PM
Aroclor 1232	ND		0.28	mg/Kg-dry	1	10/13/2020 02:12 PM
Aroclor 1242	ND		0.28	mg/Kg-dry	1	10/13/2020 02:12 PM
Aroclor 1248	ND		0.28	mg/Kg-dry	1	10/13/2020 02:12 PM
Aroclor 1254	ND		0.28	mg/Kg-dry	1	10/13/2020 02:12 PM
Aroclor 1260	ND		0.28	mg/Kg-dry	1	10/13/2020 02:12 PM
Surr: Decachlorobiphenyl	102		40-140	%REC	1	10/13/2020 02:12 PM
Surr: Tetrachloro-m-xylene	101		45-124	%REC	1	10/13/2020 02:12 PM
PESTICIDES			SW8081	IA Pre	p: SW3546 10/13/20 11:39	Analyst: RM
4,4´-DDD	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
4,4´-DDE	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
4,4´-DDT	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Aldrin	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
alpha-BHC	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
alpha-Chlordane	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
beta-BHC	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Chlordane, Technical	ND		0.10	mg/Kg-dry	1	10/13/2020 02:41 PM
delta-BHC	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Dieldrin	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Endosulfan I	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Endosulfan II	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Endosulfan sulfate	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Endrin	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Endrin aldehyde	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Endrin ketone	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
gamma-BHC (Lindane)	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
gamma-Chlordane	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Heptachlor	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Heptachlor epoxide	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Methoxychlor	ND		0.042	mg/Kg-dry	1	10/13/2020 02:41 PM
Toxaphene	ND		0.25	mg/Kg-dry	1	10/13/2020 02:41 PM
Surr: Decachlorobiphenyl	85.8		50-150	%REC	1	10/13/2020 02:41 PM
Surr: Tetrachloro-m-xylene	93.9		50-150	%REC	1	10/13/2020 02:41 PM
MERCURY BY CVAA			SW7471	IB Pre	p: SW7471 10/7/20 09:20	Analyst: MAC
Mercury	ND		0.020	mg/Kg-dry	1	10/7/2020 02:50 PM
METALS BY ICP-MS			SW6020)B Pre	p: SW3050B 10/9/20 15:45	Analyst: DSC

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20100478

 Sample ID:
 Wildwood 02
 Lab ID:
 20100478-01

Date: 19-Oct-20

Collection Date: 10/5/2020 08:15 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Aluminum	8,100		320	mg/Kg-dry	100	10/11/2020 02:42 PM
Antimony	ND		0.40	mg/Kg-dry	1	10/9/2020 11:02 PM
Arsenic	7.5		0.40	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Barium	2,400		40	mg/Kg-dry	100	10/11/2020 02:44 PM
Beryllium	0.89		0.16	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Cadmium	ND		0.16	mg/Kg-dry	1	10/9/2020 11:02 PM
Calcium	1,900		40	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Chromium	14		0.40	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Cobalt	19		0.40	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Copper	4.5		0.40	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Iron	200,000		1,600	mg/Kg-dry	100	10/11/2020 02:44 PM
Lead	35		0.40	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Magnesium	560		16	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Manganese	1,300		40	mg/Kg-dry	100	10/11/2020 02:42 PM
Nickel	5.1		0.40	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Potassium	400		16	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Selenium	0.79		0.40	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Silver	ND		0.40	mg/Kg-dry	1	10/9/2020 11:02 PM
Sodium	34		24	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Thallium	ND		0.40	mg/Kg-dry	1	10/9/2020 11:02 PM
Vanadium	42		0.40	mg/Kg-dry	, 1	10/9/2020 11:02 PM
Zinc	25		0.80	mg/Kg-dry	1	10/9/2020 11:02 PM
SEMI-VOLATILE ORGANIC CO	MPOUNDS		SW846	8270D Pre	p: SW3546 10/8/20 14:1	1 Analyst: JZB
1,1`-Biphenyl	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
2,4,5-Trichlorophenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
2,4,6-Trichlorophenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
2,4-Dichlorophenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
2,4-Dimethylphenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
2,4-Dinitrophenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
2,4-Dinitrotoluene	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
2,6-Dinitrotoluene	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
2-Chloronaphthalene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
2-Chlorophenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
2-Methylnaphthalene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
2-Methylphenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
2-Nitroaniline	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
2-Nitrophenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
3&4-Methylphenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
3,3´-Dichlorobenzidine	ND		0.19	mg/Kg-dry	1	10/12/2020 09:05 PM
3-Nitroaniline	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM

Client: Environmental Quality Management, Inc.

Project: Oronogo
 Work Order:
 20100478

 Sample ID: Wildwood 02
 Lab ID: 20100478-01

Date: 19-Oct-20

Collection Date: 10/5/2020 08:15 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
4,6-Dinitro-2-methylphenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
4-Bromophenyl phenyl ether	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
4-Chloro-3-methylphenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
4-Chloroaniline	ND		0.075	mg/Kg-dry	1	10/12/2020 09:05 PM
4-Chlorophenyl phenyl ether	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
4-Nitroaniline	ND		0.19	mg/Kg-dry	1	10/12/2020 09:05 PM
4-Nitrophenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Acenaphthene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Acenaphthylene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Acetophenone	ND		0.037	mg/Kg-dry		10/12/2020 09:05 PM
Anthracene	ND		0.0074	mg/Kg-dry		10/12/2020 09:05 PM
Atrazine	ND		0.037	mg/Kg-dry		10/12/2020 09:05 PM
Benzaldehyde	ND		0.075	mg/Kg-dry		10/12/2020 09:05 PM
Benzo(a)anthracene	ND		0.0074	mg/Kg-dry		10/12/2020 09:05 PM
Benzo(a)pyrene	ND		0.0074	mg/Kg-dry		10/12/2020 09:05 PM
Benzo(b)fluoranthene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Benzo(g,h,i)perylene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Benzo(k)fluoranthene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Bis(2-chloroethoxy)methane	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Bis(2-chloroethyl)ether	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Bis(2-chloroisopropyl)ether	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Bis(2-ethylhexyl)phthalate	ND		0.037	mg/Kg-dry		10/12/2020 09:05 PM
Butyl benzyl phthalate	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Caprolactam	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Carbazole	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Chrysene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Dibenzo(a,h)anthracene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Dibenzofuran	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Diethyl phthalate	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Dimethyl phthalate	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Di-n-butyl phthalate	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Di-n-octyl phthalate	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Fluoranthene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Fluorene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Hexachlorobenzene	ND		0.037	mg/Kg-dry		10/12/2020 09:05 PM
Hexachlorobutadiene	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Hexachlorocyclopentadiene	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Hexachloroethane	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Indeno(1,2,3-cd)pyrene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Isophorone	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20100478

 Sample ID:
 Wildwood 02
 Lab ID:
 20100478-01

Date: 19-Oct-20

Collection Date: 10/5/2020 08:15 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Naphthalene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Nitrobenzene	ND		0.19	mg/Kg-dry	1	10/12/2020 09:05 PM
N-Nitrosodi-n-propylamine	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
N-Nitrosodiphenylamine	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Pentachlorophenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Phenanthrene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Phenol	ND		0.037	mg/Kg-dry	1	10/12/2020 09:05 PM
Pyrene	ND		0.0074	mg/Kg-dry	1	10/12/2020 09:05 PM
Surr: 2,4,6-Tribromophenol	63.0		38-92	%REC	1	10/12/2020 09:05 PM
Surr: 2-Fluorobiphenyl	67.7		44-107	%REC	1	10/12/2020 09:05 PM
Surr: 2-Fluorophenol	48.8		37-109	%REC	1	10/12/2020 09:05 PM
Surr: 4-Terphenyl-d14	67.6		52-123	%REC	1	10/12/2020 09:05 PM
Surr: Nitrobenzene-d5	63.1		41-94	%REC	1	10/12/2020 09:05 PM
Surr: Phenol-d6	50.0		28-111	%REC	1	10/12/2020 09:05 PM
VOLATILE ORGANIC COMPOUNDS	- LOW LEVEL		SW826	0C		Analyst: SJB
1,1,1-Trichloroethane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,1,2,2-Tetrachloroethane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,1,2-Trichloroethane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,1,2-Trichlorotrifluoroethane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,1-Dichloroethane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,1-Dichloroethene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,2,4-Trichlorobenzene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,2-D bromo-3-chloropropane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,2-D bromoethane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,2-Dichlorobenzene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,2-Dichloroethane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,2-Dichloropropane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,3-Dichlorobenzene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
1,4-Dichlorobenzene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
2-Butanone	ND		0.013	mg/Kg-dry	1.152	10/16/2020 01:00 PM
2-Methylnaphthalene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
4-Methyl-2-pentanone	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Acetone	0.084		0.013	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Benzene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Bromodichloromethane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Bromoform	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Bromomethane	ND		0.013	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Carbon disulfide	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Carbon tetrachloride	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Chlorobenzene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20100478

 Sample ID:
 Wildwood 02
 Lab ID:
 20100478-01

Date: 19-Oct-20

Collection Date: 10/5/2020 08:15 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Chloroethane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Chloroform	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Chloromethane	ND		0.013	mg/Kg-dry	1.152	10/16/2020 01:00 PM
cis-1,2-Dichloroethene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
cis-1,3-Dichloropropene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Cyclohexane	ND		0.013	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Dibromochloromethane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Dichlorodifluoromethane	ND		0.013	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Ethylbenzene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Isopropy benzene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Methyl acetate	ND		0.013	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Methyl tert-butyl ether	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Methylcyclohexane	ND		0.013	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Methylene chloride	ND		0.013	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Styrene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Tetrachloroethene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Toluene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
trans-1,2-Dichloroethene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
trans-1,3-Dichloropropene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Trichloroethene	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Trichlorofluoromethane	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Vinyl chloride	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Xylenes, Total	ND		0.0066	mg/Kg-dry	1.152	10/16/2020 01:00 PM
Surr: 1,2-Dichloroethane-d4	108		83-132	%REC	1.152	10/16/2020 01:00 PM
Surr: 4-Bromofluorobenzene	103		83-111	%REC	1.152	10/16/2020 01:00 PM
Surr: Dibromofluoromethane	104		77-125	%REC	1.152	10/16/2020 01:00 PM
Surr: Toluene-d8	97.0		86-108	%REC	1.152	10/16/2020 01:00 PM
MOISTURE			SW355	0C		Analyst: KTP
Moisture	12		0.10	% of samp	le 1	10/15/2020 11:59 AM
SUBCONTRACTED ANALYSES			SUBC	ONTRACT		Analyst: ALS
Subcontracted Analyses	See report			as noted	1	10/14/2020

Date: 19-Oct-20

Client: Environmental Quality Management, Inc.

Work Order: 20100478 Project: Oronogo

QC BATCH REPORT

					d: SW808	266						
MBLK	Sample ID: PBLKS1-1	65641-1656	641			ι	Jnits: µg/k	(g	Analysis	Date: 10/9	9/2020 06:	09 PN
Client ID:		Run ID	GC14_	201009A		Se	qNo: 678	3001	Prep Date: 10/9	/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
		ND	2 2500				3.71.672.6%					
Aroclor 1016 Aroclor 1221		ND ND	67									
Aroclor 1232		ND	67									
Aroclor 1232 Aroclor 1242		ND	67									
Aroclor 1248		ND	67									
Aroclor 1254		ND	67									
Aroclor 1260		ND	67									
Surr: Decachlorob	inhanyl	34.23	0	33.3		0	103	40-140	0			
Surr: Tetrachloro-n		35.78	0	33.3		0	107	45-124	0			
Suit. Tetracilloro-i	n-xylerie	33.70	U	33.3		U	107	43-124	U			
LCS	Sample ID: PLCSS1-1				ι	Jnits: µg/k	(g	Analysis	Date: 10/9	9/2020 06:	25 PI	
Client ID:		Run ID	GC14_	201009A		Se	qNo: 678	3002	Prep Date: 10/9	/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qu
Aroclor 1016		810	67	833		0	97.2	50-130	0			
Aroclor 1260		728.3	67	833		0	87.4	50-130	0			
Surr: Decachlorobi	iphenyl	33.42	0	33.3		0	100	40-140				
Surr: Tetrachloro-ri		35.25	0	33.3		0	106	45-124	0			
								/ m	Analysis	Data: 40/	V2020 06-	40 PI
		08B MS				ι	Jnits: ua/k	\u		Date. 10/9	1/ZUZU UD.	
MS Client ID:	Sample ID: 20100633 -		GC14	201009A			Jnits: µg/k aNo: 678:	CALL CONTROL				
MS			GC14_	201009A	CDV Dof		Jnits: µg/l qNo: 678	3003	Prep Date: 10/9		DF: 1	
MS Client ID:			: GC14_ 2	201009A SPK Val	SPK Ref Value		MANA DESCRIPTION	CALL CONTROL				
MS Client ID: Analyte		Run ID	all Manager Charge and				qNo: 678	3003 Control	Prep Date: 10/9	/2020	DF: 1 RPD	
MS Client ID: Analyte Aroclor 1016		Run ID	PQL	SPK Val		Se	qNo: 678 :	3003 Control Limit	Prep Date: 10/9 RPD Ref Value	/2020	DF: 1 RPD	
MS Client ID: Analyte Aroclor 1016	Sample ID: 20100633-	Run ID Result 630.2	PQL 65	SPK Val		Se 0	%REC 77.3	3003 Control Limit 40-140	Prep Date: 10/9 RPD Ref Value 0 0	/2020	DF: 1 RPD	Qua
MS Client ID: Analyte Aroclor 1016 Aroclor 1260	Sample ID: 20100633-	Run ID Result 630.2 599.7	PQL 65 65	SPK Val 815 815		0 0	%REC 77.3 73.6	3003 Control Limit 40-140 40-140	Prep Date: 10/9 RPD Ref Value 0 0 0	/2020	DF: 1 RPD	
MS Client ID: Analyte Aroclor 1016 Aroclor 1260 Surr: Decachlorobi	Sample ID: 20100633-	Result 630.2 599.7 23.72 30.92	PQL 65 65	SPK Val 815 815 32.58		0 0 0	%REC 77.3 73.6 72.8	3003 Control Limit 40-140 40-140 40-140 45-124	Prep Date: 10/9 RPD Ref Value 0 0 0	/2020	DF: 1 RPD Limit	Qua
MS Client ID: Analyte Aroclor 1016 Aroclor 1260 Surr: Decachlorobi	Sample ID: 20100633- iphenyl m-xylene	Run ID Result 630.2 599.7 23.72 30.92	PQL 65 65	SPK Val 815 815 32.58 32.58		0 0 0 0	%REC 77.3 73.6 72.8 94.9	3003 Control Limit 40-140 40-140 40-140 45-124	Prep Date: 10/9 RPD Ref Value 0 0 0	%RPD Date: 10/9	DF: 1 RPD Limit	Qua
MS Client ID: Analyte Aroclor 1016 Aroclor 1260 Surr: Decachlorobic Surr: Tetrachloro-re	Sample ID: 20100633- iphenyl m-xylene	Run ID Result 630.2 599.7 23.72 30.92	PQL 65 65 0	SPK Val 815 815 32.58 32.58		0 0 0 0	%REC 77.3 73.6 72.8 94.9 Units: μg/F	3003 Control Limit 40-140 40-140 40-140 45-124	Prep Date: 10/9 RPD Ref Value 0 0 0 Analysis	%RPD Date: 10/9	DF: 1 RPD Limit	Qu 55 PI
MS Client ID: Analyte Aroclor 1016 Aroclor 1260 Surr: Decachlorobi Surr: Tetrachloro-r. MSD Client ID: Analyte	Sample ID: 20100633- iphenyl m-xylene	Run ID Result 630.2 599.7 23.72 30.92 08B MSD Run ID	PQL 65 65 0 0 0 : GC14_3	815 815 32.58 32.58	Value SPK Ref	0 0 0 0	%REC 77.3 73.6 72.8 94.9 Units: μg/ν	3003 Control Limit 40-140 40-140 45-124 Cg 3004 Control	Prep Date: 10/9 RPD Ref Value 0 0 0 Analysis Prep Date: 10/9 RPD Ref Value	%RPD Date: 10/9	DF: 1 RPD Limit 9/2020 06: DF: 1 RPD Limit	Qu 55 PI
MS Client ID: Analyte Aroclor 1016 Aroclor 1260 Surr: Decachlorobic Surr: Tetrachloro-ri MSD Client ID: Analyte Aroclor 1016	Sample ID: 20100633- iphenyl m-xylene	Run ID Result 630.2 599.7 23.72 30.92 08B MSD Run ID Result 733.9	PQL 65 65 0 0 : GC14_:	815 815 32.58 32.58 32.58 32.58	Value SPK Ref	0 0 0 0 0	%REC 77.3 73.6 72.8 94.9 Units: μg/ν qNo: 678.	3003 Control Limit 40-140 40-140 45-124 (g 3004 Control Limit 40-140	Prep Date: 10/9 RPD Ref Value 0 0 0 Analysis Prep Date: 10/9 RPD Ref Value 630.2	%RPD Date: 10/9 %RPD 15.2	DF: 1 RPD Limit 9/2020 06: DF: 1 RPD Limit	Qu 55 PI
MS Client ID: Analyte Aroclor 1016 Aroclor 1260 Surr: Decachlorobic Surr: Tetrachloro-ri MSD Client ID:	iphenyl m-xylene Sample ID: 20100633-	Result 630.2 599.7 23.72 30.92 08B MSD Run ID	PQL 65 65 0 0 0 : GC14_3	815 815 32.58 32.58 32.58	Value SPK Ref	0 0 0 0	%REC 77.3 73.6 72.8 94.9 Units: μg/ν cqNo: 678:	3003 Control Limit 40-140 40-140 45-124 Cg 3004 Control Limit	Prep Date: 10/9 RPD Ref Value 0 0 0 Analysis Prep Date: 10/9 RPD Ref Value 630.2 599.7	%RPD Date: 10/9 %RPD 15.2 19	DF: 1 RPD Limit 0/2020 06: DF: 1 RPD Limit 50 50	Qua

Note:

Work Order: 20100478 Project: Oronogo

MBLK S	Sample ID: PBLK	S1-165837-1658	337			U	Jnits: µg/K	(g	Analysis	Date: 10/1	13/2020 01:05 PM	
Client ID:		Run ID	GC14_	201013A			qNo: 6787		Prep Date: 10/1		DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qua
Aroclor 1016		ND	67									
Aroclor 1221		ND	67									
Aroclor 1232		ND	67									
Aroclor 1242		ND	67									
Aroclor 1248		ND	67									
Aroclor 1254		ND	67									
Aroclor 1260		ND	67									
Surr: Decachlorobipl	nenyl	36.45	0	33.3		0	109	40-140	0			
Surr: Tetrachloro-m-	xylene	34.98	0	33.3		0	105	45-124	0			
LCS S	Sample ID: PLCS	S1-165837-165837				ι	Jnits: µg/K	(g	Analysis	Date: 10/1	3/2020 01	1:21 P
Client ID:		Run ID	: GC14_2	201013A		SeqNo: 6787132 Prep Date		Prep Date: 10/1	3/2020	DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Aroclor 1016		751.3	67	833		0	90.2	50-130	0			
Aroclor 1260		782.9	67	833		0	94	50-130	0			
Surr: Decachlorobipl	nenyl	33.83	0	33.3		0	102	40-140	0			
Surr: Tetrachloro-m-	xylene	34.07	0	33.3		0	102	45-124	0			
MS S	Sample ID: 20100	478-01C MS				Units: µg/Kg			Analysis	3/2020 01	1:36 P	
Client ID: Wildwood 0	2	Run ID	GC14_	201013A		Se	qNo: 6787	7133	Prep Date: 10/13/2020		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Aroclor 1016		699.5	66	826.7		0	84.6	40-140	0			
Aroclor 1260		672.2	66	826.7		0	81.3	40-140	0			
Surr: Decachlorobipl	nenyl	29.13	0	33.05		0	88.1	40-140	0			
Surr: Tetrachloro-m	xylene	31.56	0	33.05		0	95.5	45-124	0			
MSD S	Sample ID: 20100	478-01C MSD				ι	Jnits: µg/K	(g	Analysis	Date: 10/1	3/2020 01	1:57 P
Client ID: Wildwood 0	2	Run ID	GC14_	201013A		Se	qNo: 6787	7134	Prep Date: 10/1	3/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Aroclor 1016		637.5	66	824		0	77.4	40-140	699.5	9.27	50	
Aroclor 1260		654.3	66	824		0	79.4	40-140	672.2	2.71	50	
Surr: Decachlorobiple	nenyl	26.41	0	32.94		0	80.2	40-140	29.13	9.78	50	
Surr: Tetrachloro-m-	xylene	27.37	0	32.94		0	83.1	45-124	31.56	14.2	50	

Note:

Work Order: 20100478 Project: Oronogo

Batch ID: 165838	Instrument ID GC12	2		Metho	d: SW808	1A							
MBLK	Sample ID: PBLKS1-165	838-1658	38			Units: µg/Kg			Analysis Date: 10/13/2020 01:44 PM				
Client ID:		Run ID:	GC12_2	201013A		SeqNo:	67937	757	Prep Date: 10/	13/2020	DF: 1		
Analyte	F	Result	PQL	SPK Val	SPK Ref Value	%RI		Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
4,4'-DDD		ND	10										
4,4'-DDE		ND	10										
4,4'-DDT		ND	10										
Aldrin		ND	10										
alpha-BHC		ND	10										
alpha-Chlordane		ND	10										
beta-BHC		ND	10										
Chlordane, Technical	(ND	25										
delta-BHC		ND	10										
Dieldrin		ND	10										
Endosulfan I		ND	10										
Endosulfan II		ND	10										
Endosulfan sulfate		ND	10										
Endrin		ND	10										
Endrin aldehyde		ND	10										
Endrin ketone		ND	10										
gamma-BHC (Lindan	e)	ND	10										
gamma-Chlordane		ND	10										
Heptachlor		ND	10										
Heptachlor epoxide		ND	10										
Methoxychlor		ND	10										
Toxaphene		ND	60										
Surr: Decachlorobi	phenyl	31.17	0	33.3		0 93	.6	50-150	()			
Surr: Tetrachloro-n	n-xylene .	31.83	0	33.3		0 95	.6	50-150	()			

Work Order: 20100478 Project: Oronogo

Client:

Batch ID: 165838	Instrument ID GC12		Metho	d: SW808	81A						
LCS Samp	ole ID: PLCSS1-165838-165	838			Į	Units: µg/k	(g	Analysis	s Date: 10/	13/2020 0	1:58 PM
Client ID:	Run ID	CC12_	201013A		Se	eqNo: 679	3758	Prep Date: 10/	13/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
4,4´-DDD	28.28	10	33.33		0	84.9	50-150	0	Ç.		
4,4'-DDE	30.07	10	33.33		0	90.2	50-150	0			
4,4'-DDT	31.1	10	33.33		0	93.3	50-150	0	6		
Aldrin	30.9	10	33.33		0	92.7	50-150	0	Ď.		
alpha-BHC	31.83	10	33.33		0	95.5	50-150	0			
alpha-Chlordane	30.72	10	33.33		0	92.2	50-150	0			
beta-BHC	30.33	10	33.33		0	91	50-150	0			
delta-BHC	32	10	33.33		0	96	50-150	0)		
Dieldrin	31.22	10	33.33		0	93.7	50-150	0	Ď.		
Endosulfan I	30.6	10	33.33		0	91.8	50-150	0			
Endosulfan II	30.33	10	33.33		0	91	50-150	0			
Endosulfan sulfate	29	10	33.33		0	87	50-150	0	Į.		
Endrin	32.47	10	33.33		0	97.4	50-150	0			
Endrin aldehyde	30.83	10	33.33		0	92.5	50-150	0	Ğ		
Endrin ketone	29.9	10	33.33		0	89.7	50-150	0	ř.		
gamma-BHC (Lindane)	31.27	10	33.33		0	93.8	50-150	0			
gamma-Chlordane	29.78	10	33.33		0	89.4	50-150	0			
Heptachlor	30.73	10	33.33		0	92.2	50-150	0			
Heptachlor epoxide	31.02	10	33.33		0	93.1	50-150	0)		
Methoxychlor	29.02	10	33.33		0	87.1	50-150	0	í.		
Surr: Decachlorobiphenyl	30.12	0	33.3		0	90.4	50-150	0			
Surr: Tetrachloro-m-xylen	e 30.53	0	33.3		0	91.7	50-150	0			

Work Order: 20100478 Project: Oronogo

Batch ID: 165838	Instrument ID GC12	Method:	SW8081A

MS Sample ID: 201	00478-01C MS				l	Jnits: µg/k	(g	Analysis	s Date: 10/	13/2020 0	2:13 PM
Client ID: Wildwood 02	Run ID	GC12_	201013A		Se	qNo: 679	3759	Prep Date: 10/	13/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
4,4´-DDD	12.14	9.9	32.93		0	36.9	50-150	0			S
4,4´-DDE	13.26	9.9	32.93		0	40.3	50-150	0	0		S
4,4´-DDT	13.87	9.9	32.93		0	42.1	50-150	0			S
Aldrin	13.77	9.9	32.93		0	41.8	50-150	0	ři		S
alpha-BHC	14	9.9	32.93		0	42.5	50-150	0			S
alpha-Chlordane	13.08	9.9	32.93		0	39.7	50-150	0			S
beta-BHC	12.04	9.9	32.93		0	36.6	50-150	0			S
delta-BHC	11.63	9.9	32.93		0	35.3	50-150	0)		S
Dieldrin	12.55	9.9	32.93		0	38.1	50-150	0			S
Endosulfan I	12.53	9.9	32.93		0	38.1	50-150	0			S
Endosulfan II	10.57	9.9	32.93		0	32.1	50-150	0			S
Endosulfan sulfate	9.551	9.9	32.93		0	29	50-150	0	Q.		JS
Endrin	11.71	9.9	32.93		0	35.6	50-150	0			S
Endrin aldehyde	9.568	9.9	32.93		0	29.1	50-150	0	6		JS
Endrin ketone	10.33	9.9	32.93		0	31.4	50-150	0	ři.		S
gamma-BHC (Lindane)	13.55	9.9	32.93		0	41.2	50-150	0			S
gamma-Chlordane	12.42	9.9	32.93		0	37.7	50-150	0			S
Heptachlor	13.59	9.9	32.93		0	41.3	50-150	0			S
Heptachlor epoxide	12.8	9.9	32.93		0	38.9	50-150	0			S
Methoxychlor	10.23	9.9	32.93		0	31.1	50-150	0			S
Surr: Decachlorobiphenyl	13.85	0	32.9		0	42.1	50-150	0			S
Surr: Tetrachloro-m-xylene	14.52	0	32.9		0	44.1	50-150	0			S

Work Order: 20100478 Project: Oronogo QC BATCH REPORT

Batch ID: 165838	Instrument ID GC12	Method:	SW8081A					
MSD	Sample ID: 20100478-01C MSD		Units: µg/Kg	Analysis Date: 10/13/2020 (

MSD San	SD Sample ID: 20100478-01C MSD					Jnits: µg/k	(g	Analysis Date: 10/13/2020 02:28 PM			
Client ID: Wildwood 02	Run ID	GC12_	201013A		Se	eqNo: 679	3760	Prep Date: 10/1	3/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
4,4´-DDD	14.27	10	33.26		0	42.9	50-150	12.14	16.2	35	S
4,4´-DDE	16.02	10	33.26		0	48.2	50-150	13.26	18.9	35	S
4,4'-DDT	15.65	10	33.26		0	47.1	50-150	13.87	12.1	35	S
Aldrin	16.58	10	33.26		0	49.9	50-150	13.77	18.5	35	S
alpha-BHC	16.71	10	33.26		0	50.3	50-150	14	17.7	35	
alpha-Chlordane	15.45	10	33.26		0	46.5	50-150	13.08	16.7	35	S
beta-BHC	13.95	10	33.26		0	42	50-150	12.04	14.7	35	S
delta-BHC	13.17	10	33.26		0	39.6	50-150	11.63	12.5	35	S
Dieldrin	14.72	10	33.26		0	44.3	50-150	12.55	15.9	35	S
Endosulfan I	14.7	10	33.26		0	44.2	50-150	12.53	15.9	35	S
Endosulfan II	11.74	10	33.26		0	35.3	50-150	10.57	10.5	35	S
Endosulfan sulfate	10.16	10	33.26		0	30.6	50-150	9.551	6.19	35	S
Endrin	13.42	10	33.26		0	40.4	50-150	11.71	13.6	35	S
Endrin aldehyde	10.34	10	33.26		0	31.1	50-150	9.568	7.8	35	S
Endrin ketone	11.34	10	33.26		0	34.1	50-150	10.33	9.39	35	S
gamma-BHC (Lindane)	16.05	10	33.26		0	48.3	50-150	13.55	16.9	35	S
gamma-Chlordane	14.75	10	33.26		0	44.4	50-150	12.42	17.2	35	S
Heptachlor	16.43	10	33.26		0	49.4	50-150	13.59	19	35	S
Heptachlor epoxide	15.12	10	33.26		0	45.5	50-150	12.8	16.6	35	S
Methoxychlor	11.63	10	33.26		0	35	50-150	10.23	12.8	35	S
Surr: Decachlorobiphen	yl 16.63	0	33.23		0	50.1	50-150	13.85	18.3	35	
Surr: Tetrachloro-m-xyle	ene 17.73	0	33.23		0	53.4	50-150	14.52	19.9	35	

The following samples were analyzed in this batch:

20100478-01C

Work Order: 20100478 Project: Oronogo QC BATCH REPORT

Batch ID: 165525	Instrument ID HG	4		Metho	d: SW747	'1B					
MBLK	Sample ID: MBLK-1658	25-16552	5			Units: mg	/Kg	Analysis	Date: 10/7	7/2020 01:	54 PM
Client ID:		Run ID	: HG4_2	01007A		SeqNo: 676	8652	Prep Date: 10/7	7/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		ND	0.020								
LCS	Sample ID: LCS-16552	5-165525				Units: mg	/Kg	Analysis	7/2020 01:	020 01:55 PM	
Client ID:		Run ID	: HG4_2	01007A		SeqNo: 676	8653	Prep Date: 10/7	7/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		0.175	0.020	0.1665		0 105	80-120	0			
MS	Sample ID: 20100015-0	1CMS				Units: mg	/Kg	Analysis	Date: 10/7	7/2020 02:	04 PM
Client ID:		Run ID	: HG4_2	01007A		SeqNo: 676	8658	Prep Date: 10/7	//2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		0.1392	0.016	0.1337	0.000785	53 104	75-125	0			
MSD	Sample ID: 20100015-0	1CMSD				Units: mg	/Kg	Analysis	Date: 10/7	7/2020 02:	06 PM
Client ID:		Run ID	: HG4_2	01007A		SeqNo: 676	8659	Prep Date: 10/7	7/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		0.1403	0.016	0.1328	0.000785	53 105	75-125	0.1392	0.765	35	
The following same	ples were analyzed in thi	s batch:	20	100478-01	C					g.	

Note:

Work Order: 20100478 Project: Oronogo

Batch ID: 165694	Instrument ID ICPMS3		Method	: SW602	20B					
MBLK	Sample ID: MBLK-165694-165694	1			Units: mg/	Kg	Analysi	s Date: 10/	9/2020 10	:36 PM
Client ID:	Run ID	ICPMS3	_201009B	SeqNo: 6779119		Prep Date: 10	9/2020	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	ND	2.0								
Antimony	ND	0.25								
Arsenic	ND	0.25								
Barium	ND	0.25								
Beryllium	ND	0.10								
Cadmium	ND	0.10								
Calcium	ND	25								
Chromium	ND	0.25								
Cobalt	ND	0.25								
Copper	ND	0.25								
Iron	ND	10								
Lead	ND	0.25								
Magnesium	ND	10								
Manganese	ND	0.25								
Nickel	ND	0.25								
Potassium	ND	10								
Selenium	ND	0.25								
Silver	ND	0.25								
Sodium	ND	15								
Thallium	ND	0.25								
Vanadium	ND	0.25								
Zinc	ND	0.50								

Work Order: 20100478 Project: Oronogo

Batch ID: 165694	Instrument ID ICPMS3		Method	SW602	20B	1 1 1 1 1 1 1					
LCS	Sample ID: LCS-165694-1656	94			ι	Jnits: mg/	Kg	Analys	is Date: 10/	9/2020 10):38 PM
Client ID:	Rui	ID: ICPMS	3_201009B		Se	eqNo: 6779	9120	Prep Date: 10	/9/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	5.203	2.0	5		0	104	80-120		0		
Antimony	4.9	0.25	5		0	98	80-120		0		
Arsenic	4.921	0.25	5		0	98.4	80-120	3	0		
Barium	4.966	0.25	5		0	99.3	80-120		0		
Beryllium	5.091	0.10	5		0	102	80-120		0		
Cadmium	5.02	0.10	5		0	100	80-120		D		
Calcium	518.3	25	500		0	104	80-120	9)		
Chromium	5.072	0.25	5		0	101	80-120	0	D		
Cobalt	5.089	0.25	5		0	102	80-120		0		
Copper	4.999	0.25	5		0	100	80-120		0		
Iron	508.9	10	500		0	102	80-120)		
Lead	5.074	0.25	5		0	101	80-120	9	0		
Magnesium	509.7	10	500		0	102	80-120	9	0		
Manganese	4.861	0.25	5		0	97.2	80-120	3	0		
Nickel	5.036	0.25	5		0	101	80-120		0		
Potassium	520.7	10	500		0	104	80-120		0		
Selenium	4.804	0.25	5		0	96.1	80-120	1)		
Silver	5.152	0.25	5		0	103	80-120		0		
Sodium	521	15	500		0	104	80-120		0		
Thallium	4.794	0.25	5		0	95.9	80-120		0		
Vanadium	5.209	0.25	5		0	104	80-120		0		
Zinc	4.957	0.50	5		0	99.1	80-120		0		

Work Order: 20100478 Project: Oronogo

Batch ID: 165694	Instrument ID ICPMS3		Method	SW6020	В					
MS	Sample ID: 20100446-01BMS				Units: mg/	Kg	Analysi	s Date: 10/	9/2020 10	:42 PM
Client ID:	Run ID	CPMS	3_201009B		SeqNo: 677	9122	Prep Date: 10/	9/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	8635	2.9	7.364	5150	47300	75-125	C	Ų.		SEO
Antimony	5.634	0.37	7.364	0.1732	74.2	75-125	C	0		S
Arsenic	11.13	0.37	7.364	4.465	90.5	75-125	C	Ē		
Barium	58.23	0.37	7.364	37.55	281	75-125	C	ř		SO
Beryllium	7.956	0.15	7.364	0.3284	104	75-125	C			
Cadmium	6.271	0.15	7.364	0.05502	84.4	75-125	C)		
Calcium	18890	37	736.4	35490	-2250	75-125	C	Đ.		SEO
Chromium	20.43	0.37	7.364	10.46	135	75-125	C			S
Cobalt	11.77	0.37	7.364	4.552	98.1	75-125	C	ñ		
Iron	14280	15	736.4	10880	461	75-125	C	Į.		SEO
Lead	17.61	0.37	7.364	11.82	78.6	75-125	C			
Magnesium	7717	15	736.4	8847	-153	75-125	C	Q		SO
Nickel	20.12	0.37	7.364	11.54	117	75-125	C	Q.		
Potassium	2155	15	736.4	830.2	180	75-125	C	Ĭ		S
Selenium	6.056	0.37	7.364	0.2741	78.5	75-125	C	Ê		
Silver	6.213	0.37	7.364	0.02166	84.1	75-125	C			
Sodium	1315	22	736.4	481.4	113	75-125	C			
Thallium	7.131	0.37	7.364	0.1393	95	75-125	C			
Vanadium	32.73	0.37	7.364	16.96	214	75-125	C)		S
Zinc	39.02	0.74	7.364	28.79	139	75-125	C	Ď		S

MS	Sample ID: 20100446-01BMS				Units: mg/	Kg	Analysis Date: 10/11/2020 02:20 Pt				
Client ID:	Run	ID: ICPMS	3_201011B		SeqNo: 678	1099	Prep Date: 10	/9/2020	DF: 10		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Copper	20.9	3.7	7.364	15.3	39 74.9	75-125		0		S	
Manganese	287.6	3.7	7.364	276	.5 151	75-125	(0		SO	

Work Order: 20100478 Project: Oronogo QC BATCH REPORT

Batch ID: 165694	Instrument ID ICPMS3		Method	d: SW6020)B					
MSD	Sample ID: 20100446-01BMSD				Units: mg/	Kg	Analysis	Date: 10/9	/2020 10	44 PM
Client ID:	Run ID	ICPMS	3_201009B		SeqNo: 677	9123	Prep Date: 10/9	/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	9140	3.0	7.474	515	0 53400	75-125	8635	5.68	20	SEO
Antimony	5.815	0.37	7.474	0.173	2 75.5	75-125	5.634	3.15	20	
Arsenic	11.75	0.37	7.474	4.46	5 97.5	75-125	11.13	5.4	20	
Barium	62.7	0.37	7.474	37.5	5 337	75-125	58.23	7.4	20	SO
Beryllium	8.34	0.15	7.474	0.328	4 107	75-125	7.956	4.71	20	
Cadmium	6.411	0.15	7.474	0.0550	2 85	75-125	6.271	2.21	20	
Calcium	26020	37	747.4	3549	0 -1270	75-125	18890	31.7	20	SREO
Chromium	20.92	0.37	7.474	10.4	6 140	75-125	20.43	2.39	20	S
Cobalt	11.93	0.37	7.474	4.55	2 98.7	75-125	11.77	1.28	20	
Iron	14860	15	747.4	1088	0 532	75-125	14280	3.96	20	SEO
Lead	17.97	0.37	7.474	11.8	2 82.2	75-125	17.61	2	20	
Magnesium	7654	15	747.4	884	7 -160	75-125	7717	0.824	20	SO
Nickel	19.92	0.37	7.474	11.5	4 112	75-125	20.12	1	20	
Potassium	2358	15	747.4	830.	2 204	75-125	2155	9.01	20	S
Selenium	6.236	0.37	7.474	0.274	79.8	75-125	6.056	2.94	20	
Silver	6.408	0.37	7.474	0.0216	6 85.4	75-125	6.213	3.09	20	
Sodium	1393	22	747.4	481.4	4 122	75-125	1315	5.79	20	
Thallium	7.42	0.37	7.474	0.139	3 97.4	75-125	7.131	3.97	20	
Vanadium	34.68	0.37	7.474	16.9	6 237	75-125	32.73	5.78	20	S
Zinc	39.45	0.75	7.474	28.7	9 143	75-125	39.02	1.1	20	S

MSD	Sample ID: 20100446-01BMSD				Units: mg/	/Kg	Analysis	Date: 10/1	1/2020 02	2:22 PM
Client ID:	Run IC	: ICPMS	3_201011B		SeqNo: 678	1100	Prep Date: 10/9	/2020	DF: 10	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Copper	20.12	3.7	7.474	15.3	63.4	75-125	20.9	3.8	20	S
Manganese	254.4	3.7	7.474	276	.5 -296	75-125	287.6	12.3	20	SO

The following samples were analyzed in this batch:

20100478-01C

Work Order: 20100478 Project: Oronogo

Client:

MBLK Sample ID: SBI	LKS1-165526-1655	26			Units: µg/k	Kg	Analys	is Date: 10/	9/2020 05	:56 PM
Client ID:			_201009A		SeqNo: 678	All Control of the Control	Prep Date: 10		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
XX.	ND						6-45 (\$1.			
1,1`-Biphenyl	ND	33								
2,4,5-Trichlorophenol	ND	33								
2,4,6-Trichlorophenol	ND	33								
2,4-Dichlorophenol	ND	33								
2,4-Dimethylphenol	ND	33								
2,4-Dinitrophenol	ND	33								
2,4-Dinitrotoluene	ND	33								
2,6-Dinitrotoluene	ND	33								
2-Chloronaphthalene	ND	6.7								
2-Chlorophenol	ND	33								
2-Methylnaphthalene	ND	6.7								
2-Methylphenol	ND	33								
2-Nitroaniline	ND	33								
2-Nitrophenol	ND	33								
3&4-Methylphenol	ND	33								
3,3'-Dichlorobenzidine	ND	170								
3-Nitroaniline	ND	33								
4,6-Dinitro-2-methylphenol	ND	33								
4-Bromophenyl phenyl ether	ND	33								
4-Chloro-3-methylphenol	ND	33								
4-Chloroaniline	ND	67								
4-Chlorophenyl phenyl ether	ND	33								
4-Nitroaniline	ND	170								
4-Nitrophenol	ND	33								
Acenaphthene	ND	6.7								
Acenaphthylene	ND	6.7								
Acetophenone	ND	33								
Anthracene	ND	6.7								
Atrazine	ND	33								
Benzaldehyde	ND	67								
Benzo(a)anthracene	ND	6.7								
Benzo(a)pyrene	ND	6.7								
Benzo(b)fluoranthene	ND	6.7								
Benzo(g,h,i)perylene	ND	6.7								
Benzo(k)fluoranthene	ND	6.7								
Bis(2-chloroethoxy)methane	ND	33								
Bis(2-chloroethyl)ether	ND	33								
Bis(2-chloroisopropyl)ether	ND	33								
Bis(2-ethylhexyl)phthalate	ND	33								
Butyl benzyl phthalate	ND	33								
Caprolactam	ND	33								
Carbazole	ND	33								

Work Order: 20100478
Project: Oronogo

Chrysene	ND				0D			
J j J J J	ND	6.7						
Dibenzo(a,h)anthracene	ND	6.7						
Dibenzofuran	ND	33						
Diethyl phthalate	ND	33						
Dimethyl phthalate	ND	33						
Di-n-butyl phthalate	ND	33						
Di-n-octyl phthalate	ND	33						
Fluoranthene	ND	6.7						
Fluorene	ND	6.7						
Hexachlorobenzene	ND	33						
Hexachlorobutadiene	ND	33						
Hexachlorocyclopentadiene	e ND	33						
Hexachloroethane	ND	33						
Indeno(1,2,3-cd)pyrene	ND	6.7						
Isophorone	ND	170						
Naphthalene	ND	6.7						
Nitrobenzene	ND	170						
N-Nitrosodi-n-propylamine	ND	33						
N-Nitrosodiphenylamine	ND	33						
Pentachlorophenol	ND	33						
Phenanthrene	ND	6.7						
Phenol	ND	33						
Pyrene	ND	6.7						
Surr: 2,4,6-Tribromopher	nol 2351	0	3333	0	70.5	38-92	0	
Surr: 2-Fluorobiphenyl	2550	0	3333	0	76.5	44-107	0	
Surr: 2-Fluorophenol	2108	0	3333	0	63.2	37-109	0	
Surr: 4-Terphenyl-d14	3332	0	3333	0	100	52-123	0	
Surr: Nitrobenzene-d5	2371	0	3333	0	71.1	41-94	0	
Surr: Phenol-d6	2622	0	3333	0	78.7	28-111	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20100478 Project: Oronogo

Batch ID: 165526 Instrument ID SVMS8 Method: SW846 8270D

LCS Sample ID: SL	CSS1-165526-165	526			ι	Jnits: µg/k	(g	Analysi	s Date: 10/	9/2020 06	:18 PM
Client ID:	Run ID	SVMS8	_201009A		Se	qNo: 678	2703	Prep Date: 10/	8/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1'-Biphenyl	1101	33	1333		0	82.6	53-97	C			
2,4,5-Trichlorophenol	1053	33	1333		0	79	52-111	(
2,4,6-Trichlorophenol	1081	33	1333		0	81.1	46-105	(
2,4-Dichlorophenol	1097	33	1333		0	82.3	47-96	(
2,4-Dimethylphenol	1070	33	1333		0	80.3	49-97	C			
2,4-Dinitrophenol	628.7	33	1333		0	47.2	10-106	(
2,4-Dinitrotoluene	1143	33	1333		0	85.7	58-110	(20		
2,6-Dinitrotoluene	1164	33	1333		0	87.3	59-108	(
2-Chloronaphthalene	1072	6.7	1333		0	80.4	56-104	(
2-Chlorophenol	1030	33	1333		0	77.3	50-104	(
2-Methylnaphthalene	1069	6.7	1333		0	80.2	54-96	0	7		
2-Methylphenol	1073	33	1333		0	80.5	49-105	(
2-Nitroaniline	1111	33	1333		0	83.3	54-107	C			
2-Nitrophenol	1059	33	1333		0	79.4	51-94	C)		
3&4-Methylphenol	1077	33	1333		0	80.8	48-105	C			
3,3'-Dichlorobenzidine	985.3	170	1333		0	73.9	39-99	C	1		
3-Nitroaniline	765.3	33	1333		0	57.4	17-92	C)		
1,6-Dinitro-2-methylphenol	1009	33	1333		0	75.7	32-103	C	Ü.		
4-Bromophenyl phenyl ether	1204	33	1333		0	90.3	60-106	C			
4-Chloro-3-methylphenol	1145	33	1333		0	85.9	51-101	C			
1-Chloroaniline	1105	67	1333		0	82.9	27-110	C)		
4-Chlorophenyl phenyl ether	1182	33	1333		0	88.7	58-106	C)		
4-Nitroaniline	670	170	1333		0	50.3	21-100	C			
1-Nitrophenol	820.7	33	1333		0	61.6	29-120	C			
Acenaphthene	1069	6.7	1333		0	80.2	55-101	C	T.		
Acenaphthylene	1132	6.7	1333		0	84.9	59-106	C			
Acetophenone	1040	33	1333		0	78	51-100	C)		
Anthracene	1192	6.7	1333		0	89.4	67-105	C)		
Atrazine	1213	33	1333		0	91	45-125	C			
Benzaldehyde	376.7	67	1333		0	28.3	10-120	0			
Benzo(a)anthracene	1229	6.7	1333		0	92.2	68-105	C	1		
Benzo(a)pyrene	1254	6.7	1333		0	94.1	68-110	C)		
Benzo(b)fluoranthene	1261	6.7	1333		0	94.6	65-110	C)		
Benzo(g,h,i)perylene	1228	6.7	1333		0	92.1	60-120	C	<u> </u>		
Benzo(k)fluoranthene	1270	6.7	1333		0	95.3	66-113	C			
Bis(2-chloroethoxy)methane	1089	33	1333		0	81.7	53-96	C) i		
Bis(2-chloroethyl)ether	1068	33	1333		0	80.1	47-108	C) i		
Bis(2-chloroisopropyl)ether	991.3	33	1333		0	74.4	47-107	C)		
Bis(2-ethylhexyl)phthalate	1279	33	1333		0	96	59-117	C			
Butyl benzyl phthalate	1225	33	1333		0	91.9	59-106	C	E .		
Caprolactam	1092	33	1333		0	81.9	42-105	C			
Carbazole	1189	33	1333		0	89.2	67-108	C			

Work Order: 20100478
Project: Oronogo

Batch ID: 165526	Instrument ID SVMS8		Method:	SW846 827	0D			
Chrysene	1209	6.7	1333	0	90.7	68-108	0	
Dibenzo(a,h)anthracene	1183	6.7	1333	0	88.8	62-119	0	
Dibenzofuran	1149	33	1333	0	86.2	60-104	0	
Diethyl phthalate	1161	33	1333	0	87.1	62-111	0	
Dimethyl phthalate	1165	33	1333	0	87.4	62-106	0	
Di-n-butyl phthalate	1219	33	1333	0	91.5	59-105	0	
Di-n-octyl phthalate	1372	33	1333	0	103	51-123	0	
Fluoranthene	1173	6.7	1333	0	88	67-106	0	
Fluorene	1125	6.7	1333	0	84.4	59-107	0	
Hexachlorobenzene	1186	33	1333	0	89	62-103	0	
Hexachlorobutadiene	1016	33	1333	0	76.2	51-94	0	
Hexachlorocyclopentadiene	1098	33	1333	0	82.4	25-120	0	
Hexachloroethane	992	33	1333	0	74.4	55-93	0	
Indeno(1,2,3-cd)pyrene	1223	6.7	1333	0	91.8	56-120	0	
Isophorone	1111	170	1333	0	83.3	52-99	0	
Naphthalene	1047	6.7	1333	0	78.5	46-98	0	
Nitrobenzene	1038	170	1333	0	77.9	53-95	0	
N-Nitrosodi-n-propylamine	1096	33	1333	0	82.2	50-104	0	
N-Nitrosodiphenylamine	1218	33	1333	0	91.4	63-107	0	
Pentachlorophenol	996	33	1333	0	74.7	34-106	0	
Phenanthrene	1184	6.7	1333	0	88.8	66-101	0	
Phenol	1035	33	1333	0	77.6	44-109	0	
Pyrene	1327	6.7	1333	0	99.6	60-119	0	
Surr: 2,4,6-Tribromophen	ol 2803	0	3333	0	84.1	38-92	0	
Surr: 2-Fluorobiphenyl	2649	0	3333	0	79.5	44-107	0	
Surr: 2-Fluorophenol	2293	0	3333	0	68.8	37-109	0	
Surr: 4-Terphenyl-d14	3073	0	3333	0	92.2	52-123	0	
Surr: Nitrobenzene-d5	2589	0	3333	0	77.7	41-94	0	
Surr: Phenol-d6	2692	0	3333	0	80.8	28-111	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20100478 Project: Oronogo

Batch ID: 165526 Instrument ID SVMS8 Method: SW846 8270D

MS Sample ID: 2010	0329-01B MS		Units: µg/Kg			(g	Analysis Date: 10/9/2020 06:57 PM				
Client ID:	Run II	D: SVMS8	_201009A		SeqNo: 6782704		Prep Date: 10/8/2020		DF: 10		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1`-Biphenyl	1125	320	1292		0	87	53-97	C			
2,4,5-Trichlorophenol	1144	320	1292		0	88.5	52-111	0			
2,4,6-Trichlorophenol	1151	320	1292		0	89	46-105	0			
2,4-Dichlorophenol	1067	320	1292		0	82.5	47-96	0			
2,4-Dimethylphenol	1073	320	1292		0	83	49-97	0			
2,4-Dinitrophenol	646.4	320	1292		0	50	10-106	0			
2,4-Dinitrotoluene	1099	320	1292		0	85	58-110	0			
2,6-Dinitrotoluene	1176	320	1292		0	91	59-108	0			
2-Chloronaphthalene	1067	65	1292		0	82.5	56-104	0			
2-Chlorophenol	1099	320	1292		0	85	50-104	0	201		
2-Methylnaphthalene	1086	65	1292		0	84	54-96	0			
A NORTH AND A STORY CHARLES AND	1105	320	1292		200	85.5	49-105	0	0		
2-Methylphenol					0						
2-Nitroaniline	1073	320	1292		0	83	54-107	0			
2-Nitrophenol	1067	320	1292		0	82.5	51-94	0			
3&4-Methylphenol	1092	320	1292		0	84.5	48-105	0			B1
3,3´-Dichlorobenzidine	775.6	1,600	1292		0	60	39-99	C			J
3-Nitroaniline	911.4	320	1292		0	70.5	17-92	C	20		
1,6-Dinitro-2-methylphenol	853.2	320	1292		0	66	32-103	C			
1-Bromophenyl phenyl ether	1073	320	1292		0	83	60-106	C			
4-Chloro-3-methylphenol	1092	320	1292		0	84.5	51-101	C	É		
4-Chloroaniline	581.7	650	1292		0	45	27-110	C)		J
4-Chlorophenyl phenyl ether	1144	320	1292		0	88.5	58-106	C			
4-Nitroaniline	969.6	1,600	1292		0	75	21-100	C	Q.		J
4-Nitrophenol	795	320	1292		0	61.5	29-120	C	<u> </u>		
Acenaphthene	1041	65	1292		0	80.5	55-101	C	Ē		
Acenaphthylene	1054	65	1292		0	81.5	59-106	C	Ď		
Acetophenone	1125	320	1292		0	87	51-100	C	ĺ		
Anthracene	1131	65	1292		0	87.5	67-105	C	ĺ		
Atrazine	1131	320	1292		0	87.5	45-125	C			
Benzaldehyde	517.1	650	1292		0	40	10-120	C			J
Benzo(a)anthracene	1312	65	1292	234		83.4	68-105	C			
Benzo(a)pyrene	1286	65	1292	241		80.9	68-110	0			
Benzo(b)fluoranthene	1338	65	1292	378		74.3	65-110	0			
Benzo(g,h,i)perylene	1209	65	1292	254		73.9	60-120	C			
Benzo(k)fluoranthene	1215	65	1292	143		82.9	66-113	0			
Bis(2-chloroethoxy)methane	1086	320	1292	140	0	84	53-96	0			
Bis(2-chloroethyl)ether	1151	320	1292		0	89	47-108	0			
Bis(2-chloroisopropyl)ether	1067	320	1292		0	82.5	47-107	0			
Bis(2-ethylhexyl)phthalate	1338	320	1292		0	104	59-117	0			
	1299	to a surface	0,27,00,00,00			171.01.01.01.01	NAME OF STREET	100			
Butyl benzyl phthalate		320	1292		0	101	59-106	0			
Caprolactam Carbazole	1189 1125	320 320	1292 1292		0	92 87	42-105 67-108	0			

Work Order: 20100478
Project: Oronogo

QC BATCH REPORT

Batch ID: 165526	Instrument ID SVMS8		Method:	SW846 827	'0D			
Chrysene	1286	65	1292	221.6	82.4	68-108	0	
Dibenzo(a,h)anthracene	963.1	65	1292	0	74.5	62-119	0	
Dibenzofuran	1144	320	1292	0	88.5	60-104	0	
Diethyl phthalate	1092	320	1292	0	84.5	62-111	0	
Dimethyl phthalate	1151	320	1292	0	89	62-106	0	
Di-n-butyl phthalate	1228	320	1292	0	95	59-105	0	
Di-n-octyl phthalate	1325	320	1292	0	103	51-123	0	
Fluoranthene	1487	65	1292	482.4	77.7	67-106	0	
Fluorene	1125	65	1292	0	87	59-107	0	
Hexachlorobenzene	1131	320	1292	0	87.5	62-103	0	
Hexachlorobutadiene	1015	320	1292	0	78.5	51-94	0	
Hexachlorocyclopentadiene	665.8	320	1292	0	51.5	25-120	0	
Hexachloroethane	1041	320	1292	0	80.5	55-93	0	
Indeno(1,2,3-cd)pyrene	1105	65	1292	293.4	62.8	56-120	0	
Isophorone	1041	1,600	1292	0	80.5	52-99	0	J
Naphthalene	1092	65	1292	0	84.5	46-98	0	
Nitrobenzene	1021	1,600	1292	0	79	53-95	0	J
N-Nitrosodi-n-propylamine	1125	320	1292	0	87	50-104	0	
N-Nitrosodiphenylamine	1112	320	1292	0	86	63-107	0	
Pentachlorophenol	1002	320	1292	0	77.5	34-106	0	
Phenanthrene	1273	65	1292	208.6	82.4	66-101	0	
Phenol	1067	320	1292	0	82.5	44-109	0	
Pyrene	1603	65	1292	462.8	88.2	60-119	0	
Surr: 2,4,6-Tribromopheno	ol 2631	0	3232	0	81.4	38-92	0	
Surr: 2-Fluorobiphenyl	2573	0	3232	0	79.6	44-107	0	
Surr: 2-Fluorophenol	2372	0	3232	0	73.4	37-109	0	
Surr: 4-Terphenyl-d14	2967	0	3232	0	91.8	52-123	0	
Surr: Nitrobenzene-d5	2501	0	3232	0	77.4	41-94	0	
Surr: Phenol-d6	2560	0	3232	0	79.2	28-111	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20100478 Project: Oronogo

Batch ID: 165526 Instrument ID SVMS8 Method: SW846 8270D

MSD Sample ID: 20	100329-01B MSD	0			Units: µg/Kg			Analysis Date: 10/9/2020 07:18 PM			
Client ID:	Run II	D: SVMS8	_201009A		SeqNo: 6782705			Prep Date: 10/8/2020		DF: 10	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1'-Biphenyl	1152	330	1317		0	87.5	53-97	1125	2.43	30	
2,4,5-Trichlorophenol	1146	330	1317		0	87	52-111	1144	0.149	30	
2,4,6-Trichlorophenol	1179	330	1317		0	89.5	46-105	1151	2.42	30	
2,4-Dichlorophenol	1021	330	1317		0	77.5	47-96	1067	4.39	30	
2,4-Dimethylphenol	1106	330	1317		0	84	49-97	1073	3.06	30	
2,4-Dinitrophenol	579.5	330	1317		0	44	10-106	646.4	10.9	30	
2,4-Dinitrotoluene	1073	330	1317		0	81.5	58-110	1099	2.35	30	
2,6-Dinitrotoluene	1093	330	1317		0	83	59-108	1176	7.34	30	
2-Chloronaphthalene	1146	66	1317		0	87	56-104	1067	7.17	30	
2-Chlorophenol	1067	330	1317		0	81	50-104	1099	2.96	30	
2-Methylnaphthalene	1080	66	1317		0	82	54-96	1086	0.55	30	
2-Methylphenol	1073	330	1317		0	81.5	49-105	1105	2.93	30	
2-Nitroaniline	1100	330	1317		0	83.5	54-107	1073	2.46	30	
2-Nitrophenol	1060	330	1317		0	80.5	51-94	1067	0.594	30	
3&4-Methylphenol	1040	330	1317		0	79	48-105	1092	4.87	30	
3.3'-Dichlorobenzidine	869.2	1,600	1317		0	66	39-99	775.6	0	30	J
3-Nitroaniline	889	330	1317		0	67.5	17-92	911.4	2.49	30	-
1,6-Dinitro-2-methylphenol	698	330	1317		0	53	32-103	853.2	20	30	
I-Bromophenyl phenyl ether	1172	330	1317		0	89	60-106	1073	8.83	30	
I-Chloro-3-methylphenol	1067	330	1317		0	81	51-101	1092	2.37	30	
4-Chloroaniline	605.8	660	1317		0	46	27-110	581.7	0	30	J
4-Chlorophenyl phenyl ether	1159	330	1317		0	88	58-106	1144	1.29	30	
1-Nitroaniline	1014	1,600	1317		0	77	21-100	969.6	0	30	J
4-Nitrophenol	717.8	330	1317		0	54.5	29-120	795	10.2	30	1.00
Acenaphthene	1100	66	1317		0	83.5	55-101	1041	5.52	30	
Acenaphthylene	1152	66	1317		0	87.5	59-106	1054	8.96	30	
Acetophenone	1067	330	1317		0	81	51-100	1125	5.29	30	
Anthracene	1198	66	1317		0	91	67-105	1131	5.78	30	
Atrazine	1152	330	1317		0	87.5	45-125	1131	1.86	30	
Benzaldehyde	513.6	660	1317		0	39	10-120	517.1	0	30	J
Benzo(a)anthracene	1264	66	1317	234		78.2	68-105	1312	3.71	30	
Benzo(a)pyrene	1330	66	1317	241		82.7	68-110	1286	3.35	30	
Benzo(b)fluoranthene	1324	66	1317	378		71.8	65-110	W. C. T. C.	1.08	30	
Benzo(g,h,i)perylene	1396	66	1317	254		86.7	60-120	1209	14.4	30	
Benzo(k)fluoranthene	1231	66	1317	143		82.6	66-113		1.33	30	
Bis(2-chloroethoxy)methane	1067	330	1317		0	81	53-96	1086	1.78	30	
Bis(2-chloroethyl)ether	1133	330	1317		0	86	47-108	a and a second	1.57	30	
Bis(2-chloroisopropyl)ether	1080	330	1317		0	82	47-107	1067	1.25	30	
Bis(2-ethylhexyl)phthalate	1310	330	1317		0	99.5	59-117	The state of the s	2.08	30	
Butyl benzyl phthalate	1324	330	1317		0	101	59-106	1299	1.86	30	
Caprolactam	1106	330	1317		0	84	42-105		7.23	30	
Carbazole	1179	330	1317		0	89.5	67-108		4.69	30	

Work Order: 20100478
Project: Oronogo

QC BATCH REPORT

Batch ID: 165526	Instrument ID SVMS8		Method:	SW846 827	70D					
Chrysene	1330	66	1317	221.6	84.2	68-108	1286	3.35	30	
Dibenzo(a,h)anthracene	1205	66	1317	0	91.5	62-119	963.1	22.3	30	
Dibenzofuran	1225	330	1317	0	93	60-104	1144	6.82	30	
Diethyl phthalate	1139	330	1317	0	86.5	62-111	1092	4.2	30	
Dimethyl phthalate	1179	330	1317	0	89.5	62-106	1151	2.42	30	
Di-n-butyl phthalate	1238	330	1317	0	94	59-105	1228	0.801	30	
Di-n-octyl phthalate	1264	330	1317	0	96	51-123	1325	4.69	30	
Fluoranthene	1383	66	1317	482.4	68.4	67-106	1487	7.23	30	
Fluorene	1126	66	1317	0	85.5	59-107	1125	0.12	30	
Hexachlorobenzene	1238	330	1317	0	94	62-103	1131	9.02	30	
Hexachlorobutadiene	1067	330	1317	0	81	51-94	1015	4.99	30	
Hexachlorocyclopentadiene	691.4	330	1317	0	52.5	25-120	665.8	3.78	30	
Hexachloroethane	1040	330	1317	0	79	55-93	1041	0.0221	30	
Indeno(1,2,3-cd)pyrene	1343	66	1317	293.4	79.7	56-120	1105	19.4	30	
Isophorone	1100	1,600	1317	0	83.5	52-99	1041	0	30	J
Naphthalene	1100	66	1317	0	83.5	46-98	1092	0.669	30	
Nitrobenzene	1040	1,600	1317	0	79	53-95	1021	0	30	J
N-Nitrosodi-n-propylamine	1093	330	1317	0	83	50-104	1125	2.85	30	
N-Nitrosodiphenylamine	1205	330	1317	0	91.5	63-107	1112	8.05	30	
Pentachlorophenol	915.3	330	1317	0	69.5	34-106	1002	9.03	30	
Phenanthrene	1291	66	1317	208.6	82.2	66-101	1273	1.35	30	
Phenol	1139	330	1317	0	86.5	44-109	1067	6.59	30	
Pyrene	1561	66	1317	462.8	83.4	60-119	1603	2.68	30	
Surr: 2,4,6-Tribromophen	ol 2706	0	3292	0	82.2	38-92	2631	2.84	40	
Surr: 2-Fluorobiphenyl	2785	0	3292	0	84.6	44-107	2573	7.95	40	
Surr: 2-Fluorophenol	2417	0	3292	0	73.4	37-109	2372	1.86	40	
Surr: 4-Terphenyl-d14	3128	0	3292	0	95	52-123	2967	5.28	40	
Surr: Nitrobenzene-d5	2634	0	3292	0	80	41-94	2501	5.16	40	
Surr: Phenol-d6	2575	0	3292	0	78.2	28-111	2560	0.589	40	

The following samples were analyzed in this batch:

20100478-01C

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20100478 Project: Oronogo

Batch ID: R300509 Instrument ID VMS8 Method: SW8260C

MBLK Sample ID: VBL	_KS1-201016-R30	0509			Units: µg/k	/16/2020 12:03 PM				
Client ID:	Run ID: VMS8_201016A			SeqNo: 6800745		Prep Date:		DF: 1		
Anglida	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte	Result	PUL	SPK Val	14140	70REC		, and	70RPD		Quai
1,1,1-Trichloroethane	ND	5.0								
1,1,2,2-Tetrachloroethane	ND	5.0								
1,1,2-Trichloroethane	ND	5.0								
1,1,2-Trichlorotrifluoroethane	ND	5.0								
1,1-Dichloroethane	ND	5.0								
1,1-Dichloroethene	ND	5.0								
1,2,4-Trichlorobenzene	ND	5.0								
1,2-D bromo-3-chloropropane	ND	5.0								
1,2-D bromoethane	ND	5.0								
1,2-Dichlorobenzene	ND	5.0								
1,2-Dichloroethane	ND	5.0								
1,2-Dichloropropane	ND	5.0								
1,3-Dichlorobenzene	ND	5.0								
1,4-Dichlorobenzene	ND	5.0								
2-Butanone	ND	10								
2-Methylnaphthalene	ND	5.0								
4-Methyl-2-pentanone	ND	5.0								
Acetone	ND	10								
Benzene	ND	5.0								
Bromodichloromethane	ND	5.0								
Bromoform	ND	5.0								
Bromomethane	ND	10								
Carbon disulfide	ND	5.0								
Carbon tetrachloride	ND	5.0								
Chlorobenzene	ND	5.0								
Chloroethane	ND	5.0								
	ND									
Chloroform Chloromethane	ND ND	5.0								
	ND	10								
cis-1,2-Dichloroethene	1000000	5.0								
cis-1,3-Dichloropropene	ND	5.0								
Cyclohexane	ND	10								
Dibromochloromethane	ND	5.0								
Dichlorodifluoromethane	ND	10								
Ethylbenzene	ND	5.0								
Isopropy benzene	ND	5.0								
Methyl acetate	ND	10								
Methyl tert-butyl ether	ND	5.0								
Methylcyclohexane	ND	10								
Methylene chloride	ND	10								
Styrene	ND	5.0								
Tetrachloroethene	ND	5.0								
Toluene	ND	5.0								

Work Order: 20100478
Project: Oronogo

QC	BAT	CH	RE]	PO	RT
----	-----	----	-------------	----	----

Batch ID: R300509	Instrument ID VMS8		Method:	SW8260C				
trans-1,2-Dichloroethene	ND	5.0						
trans-1,3-Dichloropropene	ND	5.0						
Trichloroethene	ND	5.0						
Trichlorofluoromethane	ND	5.0						
Vinyl chloride	ND	5.0						
Xylenes, Total	ND	5.0						
Surr: 1,2-Dichloroethane-	-d4 19.33	0	20	0	96.6	83-132	0	
Surr: 4-Bromofluorobenzo	ene 20.06	0	20	0	100	83-111	0	
Surr: Dibromofluorometh	ane 19.88	0	20	0	99.4	77-125	0	
Surr: Toluene-d8	20.23	0	20	0	101	86-108	0	

Work Order: 20100478 Project: Oronogo

Batch ID: R300509 Instrument ID VMS8 Method: SW8260C

_CS Sample	ID: VLCSS1-201016-R30	SS1-201016-R300509					(g	Analysis Date: 10/16/2020 11:			1:13 AM
Client ID:	Run II	D: VMS8_	201016A		SeqNo: 6800744			Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
,1,1-Trichloroethane	21	5.0	20		0	105	73-138	C			200 200 100 100 100 100 100 100 100 100
,1,2,2-Tetrachloroethane	20.57	5.0	20		0	103	71-126	0			
,1,2-Trichloroethane	20.69	5.0	20		0	103	77-123	0	100		
,1-Dichloroethane	20.39	5.0	20		0	102	63-148	0			
,1-Dichloroethene	21.78	5.0	20		0	109	67-156	0			
,2,4-Trichlorobenzene	18.74	5.0	20		0	93.7	70-132	0			
,2-D bromo-3-chloropropane	20.02	5.0	20		0	100	48-127	0	2		
,2-D bromo-5-chloropropane	22.52	5.0	20		0	113	71-144	0			
,2-Dichlorobenzene	21.25	5.0	20		0	106	77-127	0			
,2-Dichloroethane	20.28	5.0	20		0	101	77-127	C			
,2-Dichloropropane	20.8	5.0	20		0	104	74-130	0			
,3-Dichlorobenzene	22.57	5.0	20		0	113	75-133	0			
,4-Dichlorobenzene	22.57	5.0	20		0	113	74-130	0			
2-Butanone	15.1	10	20		0	75.5	55-132	0			
-Methyl-2-pentanone	26.63	5.0	20		0	133	67-159	0			
Acetone	17.6	10	20		0	88	31-156	0			
Benzene	21.83	5.0	20		0	109	77-133	0			
Bromodichloromethane	19.91	5.0	20		0	99.6	69-133	0			
Bromoform	19.48	5.0	20		0	97.4	55-126	0			
Bromomethane	39.01	10	20		0	195	31-174	0			S
Carbon disulfide	23.05	5.0	20		0	115	45-160	0			3
Carbon tetrachloride	19.99	5.0	20		0	100	69-140	0			
Chlorobenzene	20.53	5.0	20		0	103	76-130	0	10		
Chloroethane	20.17	5.0	20		0	101	53-150	0			
Chloroform	18.55	5.0	20		0	92.8	72-132	0			
Chloromethane	17.54	10	20		0	87.7	43-150	0			
is-1,2-Dichloroethene	20.01	5.0	20		0	100	74-134	0	17		
is-1,3-Dichloropropene	20.44	5.0	20		0	102	62-134	0			
Dibromochloromethane	19.55	5.0	20		0	97.8	57-118	0			
Dichlorodifluoromethane	31.96	10	20		0	160	43-126	0			S
Ethylbenzene	24.58	5.0	20		0	123	75-133				3
sopropy benzene	24.17	5.0	20		0	121	74-137	C			
Methyl tert-butyl ether	19.28	5.0	20		0	96.4	62-136				
Methylene chloride	22.99	10	20		0	115	55-157	0			
Styrene	24.22	5.0	20		0	121	72-138	0			
etrachloroethene	20.01	5.0	20		0	100	70-171	0			
oluene	22.55	5.0	20		0	113	76-171				
rans-1,2-Dichloroethene	21.54	5.0	20		0	108	65-137	0			
rans-1,2-Dichloroethene	20.22	5.0	20		0	101	58-126	0			
ALIA SALIM INTERNATIONAL DESCRIPTION OF THE SALIMAN SA	23.14										
richloroethene richlorofluoromethane	17.47	5.0	20		0	116 87.4	75-135	0			
							62-136				
/inyl chloride	22.83	5.0	20		0	114	57-143				

Work Order: 20100478
Project: Oronogo

	OC B	ATCH	I REP	ORT
--	------	-------------	-------	-----

Batch ID: R300509 Ins	strument ID VMS8		Method:	SW8260C			
Xylenes, Total	72.93	5.0	60	0	122	75-132	0
Surr: 1,2-Dichloroethane-d4	18	0	20	0	90	83-132	0
Surr: 4-Bromofluorobenzene	20.02	0	20	0	100	83-111	0
Surr: Dibromofluoromethane	19.06	0	20	0	95.3	77-125	0
Surr: Toluene-d8	20.15	0	20	0	101	86-108	0

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20100478 Project: Oronogo

Batch ID: R300509 Instrument ID VMS8 Method: SW8260C

MS Sample ID: 2010	1322-03A MS				Units: µg/Kg			Analysis Date: 10/16/2020 06:02 F			
Client ID:	Run ID	: VMS8_	201016A		Se	SeqNo: 6800766		Prep Date:		DF: 1.064	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	17.45	5.3	21.28		0	82	73-138	()		
1,1,2,2-Tetrachloroethane	18.4	5.3	21.28		0	86.5	71-126	(
1,1,2-Trichloroethane	19.43	5.3	21.28		0	91.3	77-123	0			
1,1-Dichloroethane	17.61	5.3	21.28		0	82.8	63-148	(
1,1-Dichloroethene	17.45	5.3	21.28		0	82	67-156	0			
1,2,4-Trichlorobenzene	16.16	5.3	21.28		0	76	70-132	(121		
1,2-D bromo-3-chloropropane	19.12	5.3	21.28		0	89.9	48-127	(
1,2-D bromoethane	20.3	5.3	21.28		0	95.4	71-144	(**		
Name and the second of the sec	20.86	5.3				98	77-127				
1,2-Dichlorobenzene 1,2-Dichloroethane	19.34	5.3	21.28		0	90.9	77-127	0	0.0		
1,2-Dichloropropane	19.27 19.74	5.3	21.28		0	90.5	74-130	((2)		
1,3-Dichlorobenzene		5.3	21.28		0	92.8	75-133	(
1,4-Dichlorobenzene	19.74	5.3	21.28		0	92.8	74-130	(100		
2-Butanone	27.47	11	21.28		0	129	55-132	(
4-Methyl-2-pentanone	27.44	5.3	21.28		0	129	67-159	C	pri		500
Acetone	42.78	11	21.28		0	201	31-156	C			S
Benzene	18.46	5.3	21.28		0	86.8	77-133	C	20		
Bromodichloromethane	19.12	5.3	21.28		0	89.9	69-133	C)		
Bromoform	16.93	5.3	21.28		0	79.5	55-126	C)		
Bromomethane	33.78	11	21.28		0	159	31-174	C)		
Carbon disulfide	18.43	5.3	21.28		0	86.6	45-160	C)		
Carbon tetrachloride	15.62	5.3	21.28		0	73.4	69-140	C)		
Chlorobenzene	18.79	5.3	21.28		0	88.3	76-130	C)		
Chloroethane	16.78	5.3	21.28		0	78.9	53-150	C)		
Chloroform	17.25	5.3	21.28		0	81	72-132	C)		
Chloromethane	15.14	11	21.28		0	71.1	43-150	C)		
cis-1,2-Dichloroethene	18.02	5.3	21.28		0	84.7	74-134	C)		
cis-1,3-Dichloropropene	18.77	5.3	21.28		0	88.2	62-134	C)		
Dibromochloromethane	18.59	5.3	21.28		0	87.4	57-118	C)		
Dichlorodifluoromethane	24.98	11	21.28		0	117	43-126	C)		
Ethylbenzene	20.64	5.3	21.28		0	97	75-133	C)		
sopropy benzene	19.33	5.3	21.28		0	90.9	74-137	C	0.0		
Methyl tert-butyl ether	19.94	5.3	21.28		0	93.7	62-136	C			
Methylene chloride	19.58	11	21.28	2.36	2.1	80.9	55-157	(
Styrene	21.93	5.3	21.28	2.50	0	103	72-138	C			
Tetrachloroethene	16.77	5.3	21.28		0	78.8	70-171				
Toluene	20.34	5.3	21.28	0.82		91.7	76-130	(
trans-1,2-Dichloroethene	17.56	5.3	21.28	0.02	0	82.5	65-137	(a1		
trans-1,2-Dichloropropene	18.49	5.3	21.28		0	86.9	58-126	(
	18.23	70000000	10010000000000		200	13.307.300.00		190	70		
Trichloroethene		5.3	21.28		0	85.6	75-135	(
Trichlorofluoromethane Vinyl chloride	13.97 18.47	5.3	21.28		0	65.6 86.8	62-136 57-143	0			

Work Order: 20100478 Project: Oronogo

	OC B	ATCH	I REP	ORT
--	------	-------------	-------	-----

Batch ID: R300509	Instrument	ID VMS8		Method	SW8260C				
Xylenes, Total		63.06	5.3	63.84	0	98.8	75-132	0	
Surr: 1,2-Dichloroetha	ane-d4	19.51	0	21.28	0	91.7	83-132	0	
Surr: 4-Bromofluorob	enzene	20.84	0	21.28	0	98	83-111	0	
Surr: Dibromofluorom	ethane	20.4	0	21.28	0	95.9	77-125	0	
Surr: Toluene-d8		21.77	0	21.28	0	102	86-108	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20100478 Project: Oronogo

Batch ID: R300509 Instrument ID VMS8 Method: SW8260C

MSD Sample ID: 20	101322-03A MSD				ι	Jnits: µg/k	(g	Analysis	Date: 10/1	6/2020 0	6:19 PM
Client ID:	Run ID	: VMS8_	201016A		Se	qNo: 680	767	Prep Date:		DF: 1.2	235
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	23.85	6.2	24.7		0	96.5	73-138	17.45	31	30	R
1,1,2,2-Tetrachloroethane	24.21	6.2	24.7		0	98	71-126	18.4	27.3	30	18
1,1,2-Trichloroethane	25.14	6.2	24.7		0	102	77-123	19.43	25.6	30	
1,1-Dichloroethane	26.26	6.2	24.7		0	106	63-148	17.61	39.4	30	R
1,1-Dichloroethene	26.11	6.2	24.7		0	106	67-156	17.45	39.8	30	R
1,2,4-Trichlorobenzene	19.18	6.2	24.7		0	77.7	70-132	16.16	17.1	30	8.20
,2-D bromo-3-chloropropane	25.45	6.2	24.7		0	103	48-127	19.12	28.4	30	
,2-D bromoethane	26.52	6.2	24.7		0	107	71-144	20.3	26.5	30	
,2-Dichlorobenzene	26.24	6.2	24.7		0	106	77-127	20.86	22.8	30	
1,2-Dichloroethane	24.8	6.2	24.7		0	100	77-127	19.34	24.7	30	
,2-Dichloropropane	24.61	6.2	24.7		0	99.7	74-130	19.27	24.4	30	
,3-Dichlorobenzene	26.17	6.2	24.7		0	106	75-133	19.74	28	30	
,4-Dichlorobenzene	26.17	6.2	24.7		0	106	74-130	19.74	28	30	
2-Butanone	39.73	12	24.7		0	161	55-132	27.47	36.5	30	SR
-Methyl-2-pentanone	36.99	6.2	24.7		0	150	67-159	27.44	29.6	30	
cetone	65.47	12	24.7		0	265	31-156	42.78	41.9	30	SR
enzene	25.27	6.2	24.7		0	102	77-133	18.46	31.1	30	R
romodichloromethane	25.19	6.2	24.7		0	102	69-133	19.12	27.4	30	
Bromoform	21.74	6.2	24.7		0	88	55-126	16.93	24.9	30	
Bromomethane	48.05	12	24.7		0	195	31-174	33.78	34.9	30	SR
Carbon disulfide	27.54	6.2	24.7		0	112	45-160	18.43	39.6	30	R
Carbon tetrachloride	21.69	6.2	24.7		0	87.8	69-140	15.62	32.5	30	R
Chlorobenzene	24.74	6.2	24.7		0	100	76-130	18.79	27.3	30	
Chloroethane	26.24	6.2	24.7		0	106	53-150	16.78	44	30	R
Chloroform	25.21	6.2	24.7		0	102	72-132	17.25	37.5	30	R
Chloromethane	22.03	12	24.7		0	89.2	43-150	15.14	37.1	30	R
is-1,2-Dichloroethene	26.26	6.2	24.7		0	106	74-134	18.02	37.2	30	R
is-1,3-Dichloropropene	24.68	6.2	24.7		0	99.9	62-134	18.77	27.2	30	
Dibromochloromethane	22.14	6.2	24.7		0	89.7	57-118	18.59	17.5	30	
Dichlorodifluoromethane	37.63	12	24.7		0	152	43-126	24.98	40.4	30	SR
thylbenzene	27.34	6.2	24.7		0	111	75-133	20.64	27.9	30	
sopropy benzene	27.39	6.2	24.7		0	111	74-137	19.33	34.5	30	R
Methyl tert-butyl ether	27.4	6.2	24.7		0	111	62-136	19.94	31.5	30	R
Methylene chloride	27.39	12	24.7	2.36	64	101	55-157	19.58	33.3	30	R
Styrene	28.06	6.2	24.7		0	114	72-138	21.93	24.5	30	
etrachloroethene	22.17	6.2	24.7		0	89.7	70-171	16.77	27.7	30	
oluene	25.92	6.2	24.7	0.82	21	102	76-130	20.34	24.1	30	
rans-1,2-Dichloroethene	26	6.2	24.7		0	105	65-137	17.56	38.8	30	R
rans-1,3-Dichloropropene	24.24	6.2	24.7		0	98.1	58-126	18.49	26.9	30	
Trichloroethene	25.11	6.2	24.7		0	102	75-135	18.23	31.8	30	R
Trichlorofluoromethane	21.3	6.2	24.7		0	86.3	62-136	13.97	41.6	30	R
Vinyl chloride	27.99	6.2	24.7		0	113	57-143	18.47	41	30	R

Work Order: 20100478
Project: Oronogo

	OC B	ATCH	I REP	ORT
--	------	-------------	-------	-----

Batch ID: R300509 Instrume	ent ID VMS8		Method	SW8260C						
Xylenes, Total	84.07	6.2	74.1	0	113	75-132	63.06	28.6	30	
Surr: 1,2-Dichloroethane-d4	24.86	0	24.7	0	101	83-132	19.51	24.1	30	
Surr: 4-Bromofluorobenzene	24.96	0	24.7	0	101	83-111	20.84	18	30	
Surr: Dibromofluoromethane	25.77	0	24.7	0	104	77-125	20.4	23.3	30	
Surr: Toluene-d8	24.37	0	24.7	0	98.7	86-108	21.77	11.3	30	

The following samples were analyzed in this batch:

20100478-01A

Work Order: 20100478 Project: Oronogo QC BATCH REPORT

MBLK	Sample ID: WBLKS-R3	00488				Units: % d	of sample	Analysis	Date: 10/1	15/2020 11	1:59 AN
Client ID:		Run ID	MOIST	_201015A		SeqNo: 679	8150	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		ND	0.10								
LCS	Sample ID: LCS-R3004	88				Units: % d	of sample	Analysis	Date: 10/	15/2020 11	1:59 AN
Client ID:		Run ID	MOIST	_201015A		SeqNo: 679	8149	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		99.99	0.10	100		0 100	98-102	0			
DUP	Sample ID: 20100225-0	1A DUP				Units: % d	of sample	Analysis	Date: 10/	15/2020 11	1:59 AN
Client ID:		Run ID	MOIST	_201015A		SeqNo: 679	8135	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		6.21	0.10	0		0 0	0-0	17.72	96.2	10	R
DUP	Sample ID: 20100389-0	1A DUP				Units: % o	of sample	Analysis	Date: 10/	15/2020 11	1:59 AN
Client ID:		Run ID	MOIST	_201015A		SeqNo: 679	8137	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		5.88	0.10	0		0 0	0-0	6.12	4	10	

Preservative Key: 1-HCI

Cincinnati, OH +1 513 733 5336

Everett, WA Holland, MI +1 616 399 6070 +1 425 356 2600

Fort Collins, CO

+1 970 490 1511

Chain of Custody Form

Page

Houston, TX +1 281 530 5656 Middletown, PA

+1 717 944 5541

Spring City, PA +1 610 948 4903 South Charleston, WV +1 304 356 3168

Salt Lake City, UT +1 801 266 7700

York, PA +1 717 505 5280

COC ID: 184724

ALS Project Manager: ALS Work Order #: 20100478 **Project Information** Parameter/Method Request for Analysis **Customer Information** Volatiles - EPA 5035/8260 **Purchase Order Project Name** ()ronogo 030319.0001 Semivolatiles - EPA 8270 Work Order **Project Number** Environmental Quality Management, Inc. Environmental Quality Management, In Pesticiles - EPA 8081 Company Name **Bill To Company** Accounts Payable adragotta Degum. com PCB-EPA 8082 Send Report To Invoice Attn 1600 Carillon Blvd 1800 Carillon Blvd Metals- EPA 6010 Address Address Herbicides - EPA 8151 Cincinnati, OH 45240 Cincinnati, OH 45240 G City/State/Zip City/State/Zip (513) 825-7500 (513) 825-7500 Н Phone Phone (513) 825-7495 (513) 825-7495 Fax Fax e-Mail Address e-Mail Address E F G Hold No. **Sample Description** Date Time Matrix Pres. # Bottles Α В C D н Wildwood 02 10/5/2020 8:15 am Ц Y 50:1 5.7.8 X X X × X 2 3 5 6 7 8 9 10 Sampler(s) Please Print & Sign Shipment Method Required Turnaround Time: (Check Box) Results Due Date: # 2 WK Days FedEX Harlan Snith Time: 9:00 0A Relinquished by: Notes: Received by: 10/5/2020 Have We rent = Received by (Daboratory): Relinquished by: Time: Cooler ID Cooler Temp. QC Package: (Check One Box Below) 1030 3.00 Logged by (Laboratory): 123 1320 2-HNO₃ 4-NaOH 5-Na₂S₂O₃ 6-NaHSO₄ 7-Other 8-4°C 9-5035

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.

3. The Chain of Custody is a legal document. All information must be completed accurately.

Client Name: **EQM - CINCINNATI**

Sample Receipt Checklist

Date/Time Received:

06-Oct-20 10:30

Work Order:	2010047	<u>78</u>				Received by	y:	KR	<u>N</u>			
Checklist compl		Keith Wierenga		06-Oct-20	<u> </u>	Reviewed by:	Bill (Carey ure				07-Oct-20
Matrices: Carrier name:	<u>Soil</u> FedEx	•	I				· ·				l	
Shipping contain	ner/coole	r in good condition?		Yes	✓	No 🗌	Not	Present				
Custody seals in	ntact on s	shipping container/coole	r?	Yes	✓	No 🗌	Not	Present				
Custody seals in	ntact on s	sample bottles?		Yes		No 🗌	Not	Present	✓			
Chain of custod	ly present	?		Yes	✓	No 🗌						
Chain of custod	ly signed	when relinquished and i	received?	Yes	✓	No 🗌						
Chain of custod	ly agrees	with sample labels?		Yes	✓	No 🗌						
Samples in prop	per conta	iner/bottle?		Yes	✓	No 🗌						
Sample contain	ers intact	?		Yes	✓	No 🗆						
Sufficient sampl	le volume	e for indicated test?		Yes	✓	No 🗆						
All samples rece	eived with	nin holding time?		Yes	✓	No 🗆						
Container/Temp	Blank te	emperature in compliance	e?	Yes	✓	No 🗆						
Sample(s) recei Temperature(s)				Yes 3.0/4.0	✓) C	No 🗆		IR3				
Cooler(s)/Kit(s):	<u>.</u>											
Date/Time samp	ple(s) ser	nt to storage:			020 1	:19:46 PM						
		zero headspace?		Yes		No L		vials subi	mitted	✓		
Water - pH acce	eptable u	pon receipt?		Yes		No L		✓				
pH adjusted? pH adjusted by:				Yes -		No L	N/A	V				
Login Notes:	- — — -											. — — — -
Client Contacted	d:		Date Contacted:			Person	Contacte	ed:				
Contacted By:			Regarding:									
Comments:												
CorrectiveAction	n:									QI	RC Pa	ige 1 of 1

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

October 13, 2020

Mr. Bill Carey ALS Environmental-Holland 3352 128th Avenue Holland, MI 49424

Certificate of Analysis

Project Name: 2020-HERBICIDES FULL LIST

SOIL - RUSH

Purchase Order: 20-122019919

Workorder: **3133238**

Workorder ID: **AEH081**|20100478

Dear Mr. Carey:

Enclosed are the analytical results for samples received by the laboratory on Thursday, October 8, 2020.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Ms. Sarah S Leung (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Brandon Frye

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Ms. Sarah S Leung
Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3133238 - 10/13/2020 Page 1 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3133238 AEH081|20100478

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
3133238001	Wildwood 02	Solid	10/5/2020 08:15	10/8/2020 09:02	Collected by Client

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3133238 - 10/13/2020 Page 2 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3133238 AEH081|20100478

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All L brary Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97) refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- -- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.

Standard Acronyms/Flags

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Sp ke
- MSD Matrix Sp ke Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
 DL DoD Detection Limit
 - I Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- * Result outside of QC limits

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3133238 - 10/13/2020 Page 3 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3133238 AEH081|20100478

Lab ID: 3133238001 Date Collected: 10/5/2020 08:15 Matrix: Solid

Sample ID: Wildwood 02 Date Received: 10/8/2020 09:02

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
HERBICIDES										
2,4-D	ND		ug/kg	112	SW846 8151A	10/9/20 08:40	CXK	10/10/20 07:32	JXS	Α
2,4-DB	ND		ug/kg	112	SW846 8151A	10/9/20 08:40	CXK	10/10/20 07:32	JXS	Α
Dalapon	ND		ug/kg	112	SW846 8151A	10/9/20 08:40	CXK	10/10/20 07:32	JXS	Α
Dicamba	ND		ug/kg	112	SW846 8151A	10/9/20 08:40	CXK	10/10/20 07:32	JXS	Α
Dichloroprop	ND		ug/kg	112	SW846 8151A	10/9/20 08:40	CXK	10/10/20 07:32	JXS	Α
Dinoseb	ND		ug/kg	191	SW846 8151A	10/9/20 08:40	CXK	10/10/20 07:32	JXS	Α
Pentachlorophenol	ND		ug/kg	112	SW846 8151A	10/9/20 08:40	CXK	10/10/20 07:32	JXS	Α
2,4,5-T	ND		ug/kg	191	SW846 8151A	10/9/20 08:40	CXK	10/10/20 07:32	JXS	Α
2,4,5-TP	ND		ug/kg	112	SW846 8151A	10/9/20 08:40	CXK	10/10/20 07:32	JXS	Α
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4-Dichlorophenylacetic acid (S)	65.7		%	36 - 113	SW846 8151A	10/9/20 08:40	CXK	10/10/20 07:32	JXS	А
WET CHEMISTRY										
Moisture	12.5		%	0.1	S2540G-11			10/10/20 12:20	AXD	Α
Total Solids	87.5		%	0.1	S2540G-11			10/10/20 12:20	AXD	Α

Ms. Sarah S Leung Project Coordinator

Page 4 of 12

Report ID: 3133238 - 10/13/2020

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

Workorder: 3133238 AEH081|20100478

Lab ID	Sample ID	Analysis Method	Prep Method	Leachate Method
3133238001	Wildwood 02	S2540G-11		
3133238001	Wildwood 02	SW846 8151A	SW846 8151A	

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3133238 - 10/13/2020 Page 5 of 12

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJ LA 74618 State Certifications: FL E871113, WA C999, MD 128, VA 460157, WV DW 9961-C, WV 343

QUALITY CONTROL DATA

Workorder: 3133238 AEH081|20100478

QC Batch: EXTR/62175 Analysis Method: SW846 8151A

QC Batch Method: SW846 8151A Associated Lab Samples: 3133238001

METHOD BLANK:	3213113
---------------	---------

METHOD BE WIN. 0210110			
Parameter	Blank Result	Units	Reporting Limit
2,4-D	ND	ug/kg	100
2,4-DB	ND	ug/kg	100
Dalapon	ND	ug/kg	100
Dicamba	ND	ug/kg	100
Dichloroprop	ND	ug/kg	100
Dinoseb	ND	ug/kg	170
Pentachlorophenol	ND	ug/kg	100
2,4,5-T	ND	ug/kg	170
2,4,5-TP	ND	ug/kg	100
2,4-Dichlorophenylacetic acid (S)	49.9	%	36 - 113

AROD/	TODY (CONTROL	CAMPI	F: 3213114

Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit
2,4-D	51.8	ug/kg	333	173	23 - 130
2,4-DB	54.8	ug/kg	333	183	10 - 130
Dalapon	26.8	ug/kg	333	ND	24 - 65
Dicamba	53.9	ug/kg	333	180	44 - 89
Dichloroprop	55.1	ug/kg	333	184	36 - 107
Dinoseb	66.9	ug/kg	333	223	25 - 100
Pentachlorophenol	64.1	ug/kg	333	214	43 - 90
2,4,5-T	54.1	ug/kg	333	180	22 - 132
2,4,5-TP	57	ug/kg	333	190	49 - 105
2,4-Dichlorophenylacetic acid (S)	63.4	%			36 - 113

MATRIX SPIKE: 3213115 DUPLICATE: 3213116 ORIGINAL: 3133155001

****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike

percent recoveries. This result is not a final value and cannot be used as such.

Parameter	Original Result	Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
2,4-D	0	ug/kg	328	158.7	142.091	48.4	43.2	23 - 130	11	34
2,4-DB	0	ug/kg	328	168.408	130.023	51.4	39.5	10 - 130	25.7	42

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3133238 - 10/13/2020 Page 6 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3133238 AEH081|20100478

Dalapon	0	ug/kg	328	141.459	175.511	43.1	53.4	24 - 65	21.5	35
Dicamba	0	ug/kg	328	223.651	187.263	68.2	56.9	44 - 89	17.7	24
Dichloroprop	0	ug/kg	328	141.155	129.634	43.1	39.4	36 - 107	8.51	26
Dinoseb	0	ug/kg	328	229.608	199.089	70	60.5	25 - 100	14.2	58
Pentachlorophenol	0	ug/kg	328	172.696	167.471	52.7	50.9	43 - 90	3.07	19
2,4,5-T	0	ug/kg	328	200.191	171.892	61.1	52.3	22 - 132	15.2	18
2,4,5-TP	0	ug/kg	328	165.491	145.026	50.5	44.1*	49 - 105	13.2	20
2,4-Dichlorophenylacetic acid (S)	70.5	%				70.5	61.4	36 - 113		

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3133238 - 10/13/2020 Page 7 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3133238 AEH081|20100478

QC Batch: WETC/245305 Analysis Method: S2540G-11

QC Batch Method: S2540G-11

Associated Lab Samples: 3133238001

SAMPLE DUPLICATE: 32138	371 ORIGINAL	: 3133192	2003		
Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture	98.1015	%	98.0454	.06	10
Total Solids	1.8984	%	1.9545	2.91	5

SAMPLE DUPLICATE: 3213872	ORIGINAL	: 3133441	001		
	Original Result		DUP Result	RPD	Max RPD
Parameter	Result	Units	Result	KPD	KPD
Moisture	32.8108	%	36.1578	9.71	10
Total Solids	67.1891	%	63.8421	5.11*	5

SAMPLE DUPLICATE: 33	213873 ORIGINAL	: 3133501	1001		
Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture	30.2158	%	28.7014	5.14	10
Total Solids	69.7841	%	71.2985	2.15	5

SAMPLE DUPLICATE: 32	13874 ORIGINAL	: 3133549	9002		
Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture	9.7966	%	10.2916	4.93	10
Total Solids	90.2033	%	89.7083	.55	5

SAMPLE DUPLICATE: 3213875	ORIGINAL	: 3133549	012		
Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture Total Solids	6.6382 93.3617	% %	5.5113 94.4886	18.6* 1.2	10 5

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3133238 - 10/13/2020 Page 8 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3133238 AEH081|20100478

	00470					
SAMPLE DUPLICATE: 3213876	ORIGINAL	3133574	1007			
	Original Result		DUP Result	RPD	Max RPD	
Parameter		Units				
Moisture	22.0183	%	22.3537	1.51	10	
Total Solids	77.9816	%	77.6462	.43	5	
SAMPLE DUPLICATE: 3213877	ORIGINAL	3133574	017			
	Original		DUP		Max	
Parameter	Result	Units	Result	RPD	RPD	
Moisture	26.2443	%	22.55	15.1*	10	
Total Solids	73.7556	%	77.4499	4.89	5	
SAMPLE DUPLICATE: 3213878	ORIGINAL	3133574	1027			
	Original		DUP		Max	
	Result		Result	RPD	RPD	
Parameter	rtoourt	Units	rtoouit	TO D	1(1)	
Moisture	9.8259	%	7.1193	31.9*	10	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3133238 - 10/13/2020 Page 9 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 3133238 AEH081|20100478

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
3133238001	Wildwood 02	SW846 8151A	EXTR/62175	SW846 8151A	SVGC/58501
3133238001	Wildwood 02			S2540G-11	WETC/245305

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3133238 - 10/13/2020 Page 10 of 12

Subcontractor:

ALS Environmental

301 Fulling Mill Road

Middletown, PA 17057

(717) 944-5541 TEL: FAX:

Acct #:

(717) 944-1430

Page I of I

Environmental

Salesperson Josh Mckinney

C	ustomer Information	2002	Project Inform	nation		30	Par	ameter/l	Method	Request	for Ana	lysis	. 55	
Purchase Order		Project Na	Name 20100478		A Sul	ocontrac	ted Ana	yses (SI	JBCON.	TRACT)				2000000
Work Order		Project Nu	mber		В									
Company Name	ALS Group USA, Corp	Bill To Cor	mpany ALS Group	USA, Corp	C						-			20 30 452 11
Send Report To	Bill Carey	Inv Attn	Accounts	Payable	D		200 200 0	000000000000000000000000000000000000000		-	OMETERS:			
Address	3352 128th Ave	Address	3352 1280	h Ave	E	1005 TO 81010			-00			- 22	C/0005006	LT 539
					F			- 10	HOUSE.					
City/State/Zip	Holland, Michigan 49424	City/State/	Zip [Holland, N	1ichigan 49424	G								W 800	
Phone	(616) 399-6070	Phone	(616) 399-	6070	н		**	3%	id 18			277		
Fax	(616) 399-6185	Fax	(616) 399-	6185	11	18,000	24330	7,000	100					
eMail Address	bill.carey@alsglobal.com	eMail CC	-		J		C-91 9	282 18	N 35%		100 100		***	100
ALS Sample ID	Client Sample ID	Matrix Co	ollection Date 24hr	Bottle	A	B	С	D	E	F	G	н	- 1	J
20100478-01B	Wildwood 02	Soil	5/Oct/2020 8:15	(1) 4OZGNEAT	X		0							

		disposed after 30	100000 TAACI IZ	erbicides (SW815	1). Please includ	e all QC with data	i. The sampl	es do not need to b	be returned and can be	
		(n)	7 10/2	120 1500	U Feely	L.				
	Relinquished by:	T-edux	Date/Time	Received by:	SEC	10/8/20	0902	Cooler IDs	Report/QC Level	
1	Relinquished by:		Date/Time	Received by:		Date/Time			<u> </u>	<i>f</i>

301 Fulling Mill Road Middletown, PA 17057 P: (717) 944-5541

F: (717) 944-1430

Condition of Sample Receipt Form

Client:	Holland	Work Order #: 3133238	itials: D	ate:	8/20	,
		rs present and recorded?		NONE (Æ)	NO
2. Are Custo	ody Seals on shipping	containers intact?		NONE	YES	NO
3. Are Custo	ody Seals on sample c	ontainers intact?		NONE	YES	NO
4. Is there a	COC (Chain-of-Custor	dy) present?			(E)	NO
S. Are the C	OC and bottle labels of	complete, legible and in agreement?			YES	0
5a. Does	the COC contain sam	ple locations?		(YES'	NO
5b. Does	s the COC contain date	and time of sample collection for all samples?		(TES)	NO
5c. Does	the COC contain sam	ple collectors name?			YES	(NO)
5d. Does	s the COC note the typ	pe(s) of preservation for all bottles?			YES	NO
5e. Does	the COC note the nu	mber of bottles submitted for each sample?			YES	·NO
5f. Does	the COC note the typ	e of sample, composite or grab?			YES	(NO)
Sg. Does	the COC note the ma	trix of the sample(s)?			PES	NO
6. Are all ac	queous samples requir	ing preservation preserved correctly?1	(N/A	YES	NO
7. Were all s	samples placed in the	proper containers for the requested analyses, with sufficie	ent volume?		YES	NO
8. Are all sa	mples within holding	times for the requested analyses?			XES	NO
9. Were all s	sample containers rece	eived intact and headspace free when required? (not broke	en, leaking, frozen, etc.)		YES,	NO
10. Did we	receive trip blanks (ap	oplies only for methods EPA 504, EPA 524.2 and 1631E (LL	. Hg)?	N/A	YES	NO
11. Were th	e samples received on	ice?			YES	NO
12. Were sa	mple temperatures me	easured at 0.0-6.0°C			œ	NO
13. Are the	samples DW matrix ? I	If YES, fill out Reportable Drinking Water questions below.		********	YES	(B)
13a. Are	the samples required	for SDWA compliance reporting?		MATA	YES	NO
13b. Did	the client provide a S	DWA PWS ID#?	/	N/A)	YES	NO
13c. Are	all aqueous unpresen	ved SDWA samples pH 5-9?		N/A	YES	NO
		SDWA sample location ID/Description?		N/A	YES	NO
· 13e. Did	the client provide the	SDWA sample type (D, E, R, C, P, S)?		W/A	YES	NO
	Cooler #:					
	Temperature (°C):	<u> 10 </u>				
	Thermometer ID:	10[
	Radiological (μCi):					
COMME	NTC /Doguired	for all NO varnances above and any can	anla non conforma			

COMMENTS (Required for all NO responses above and any sample non-conformance)

¹Final determination of correct preservation for analysis such as volatiles, microbiology, and oil and grease is made in the analytical department at the time of or following the analysis

Rev 1/20/2020

ClientSampID	SamplD	SampleDate	Analyte	FinalResult	Runits	Rlimit	DF	Table B-1 Lowest Default Target Levels All Soil Types	EPA May/2020 THQ=0.1 Screening Level Residential Soil	Background USGS Jasper County (NGDB sample D146059) A- horizon	Background USGS Jasper County (NGDB sample D146048) A- horizon
Wildwood 02	20100478-01C	10/05/2020	Aluminum	8,100	mg/Kg-dry	320	100	76000	7700	31700	37600
Wildwood 02	20100478-01C	10/05/2020	Arsenic	7.5	mg/Kg-dry	0.40	1	3.9	0.68	10	8
Wildwood 02	20100478-01C	10/05/2020	Barium	2,400	mg/Kg-dry	40	100	2000	1500	300	500
Wildwood 02	20100478-01C	10/05/2020	Beryllium	0.89	mg/Kg-dry	0.16	1	0.74	16	1	1
Wildwood 02	20100478-01C	10/05/2020	Calcium	1,900	mg/Kg-dry	40	1	NS	NS	4200	2800
Wildwood 02	20100478-01C	10/05/2020	Chromium	14	mg/Kg-dry	0.40	1	NS	NS	70	70
Wildwood 02	20100478-01C	10/05/2020	Cobalt	19	mg/Kg-dry	0.40	1	NS	2.3	7	7
Wildwood 02	20100478-01C	10/05/2020	Copper	4.5	mg/Kg-dry	0.40	1	620	310	15	15
Wildwood 02	20100478-01C	10/05/2020	Iron	200,000	mg/Kg-dry	1,600	100	NS	5500	23100	23800
Wildwood 02	20100478-01C	10/05/2020	Lead	35	mg/Kg-dry	0.40	1	3.7	400	50	30
Wildwood 02	20100478-01C	10/05/2020	Magnesium	560	mg/Kg-dry	16	1	NS	NS	1600	1600
Wildwood 02	20100478-01C	10/05/2020	Manganese	1,300	mg/Kg-dry	40	100	2700	180	700	300
Wildwood 02	20100478-01C	10/05/2020	Nickel	5.1	mg/Kg-dry	0.40	1	500	150	15	15
Wildwood 02	20100478-01C	10/05/2020	Potassium	400	mg/Kg-dry	16	1	NS	NS	7400	9900
Wildwood 02	20100478-01C	10/05/2020	Selenium	0.79	mg/Kg-dry	0.40	1	6.27	39	0.2	0.1
Wildwood 02	20100478-01C	10/05/2020	Sodium	34	mg/Kg-dry	24	1	NS	NS	2500	2500
Wildwood 02	20100478-01C	10/05/2020	Vanadium	42	mg/Kg-dry	0.40	1	530	39	70	70
Wildwood 02	20100478-01C	10/05/2020	Zinc	25	mg/Kg-dry	0.80	1	7200	2300	181	144

Note: Yellow shaded analytes are above the MRBCA LDTL. Orange shaded above the MRBCA DTL (or tehre is no applicable MO std) and are above background values for the area.

15-Sep-2020

Angye Dragotta
Environmental Quality Management, Inc.
1800 Carillon Blvd
Cincinnati, OH 45240

Re: Oronogo Work Order: 20090352

Dear Angye,

ALS Environmental received 1 sample on 03-Sep-2020 10:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 52.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely.

Electronically approved by: Bill Carey

Bill Carey

Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 🚴

ALS Group, USA

Date: 15-Sep-20

Client: Environmental Quality Management, Inc.

Project: Oronogo
Work Order: 20090352

Work Order Sample Summary

<u>Lab Samp ID Client Sample ID Matrix Tag Number Collection Date Date Received Hold</u>

20090352-01 Wildwood 01 Soil 9/2/2020 11:15 9/3/2020 10:00

ALS Group, USA

Date: 15-Sep-20

Client: Environmental Quality Management, Inc.

QUALIFIERS,

Project: Oronogo
WorkOrder: 20090352

Oronogo
ACRONYMS, UNITS

mg/Kg-dry

Milligrams per Kilogram Dry Weight

Qualifier	<u>Description</u>
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
О	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
E	EPA
SW	SW-846 Update III
Units Reported	Description
% of sample	Percent of Sample
as noted	

Date: 15-Sep-20

Project: Oronogo Case Narrative

Work Order: 20090352

Samples for the above noted Work Order were received on 9/3/2020. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Volatile Organics:

No other deviations or anomalies were noted.

Extractable Organics:

Batch 163788, Method PESTLVI_8081_S, Sample 20090352-01C: One or more surrogate recoveries were below the lower control limits. The sample results may be biased low, Tetrachloro-m-xylene

Decachlorobiphenyl

-Matrix interference (similar results in MS/MSD also).

Batch 163788, Method PESTLVI_8081_S, Sample 20090352-01C MS: The MS recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: Decachlorobiphenyl

Endrin aldehyde

Methoxychlor

Batch 163788, Method PESTLVI_8081_S, Sample 20090352-01C MSD: The MSD recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte.

Metals:

Batch 163735, Method ICP_6020_S, Sample 20090352-01CMS: The MS recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Ba, Mn

Project: Oronogo Case Narrative

Work Order: 20090352

Batch 163735, Method ICP_6020_S, Sample 20090352-01CMS: The MS recovery was above the upper control limit. The corresponding result in the parent sample may be biased high for this analyte: Cr, V

Batch 163735, Method ICP_6020_S, Sample 20090352-01CMS: The MS recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: Sb

Batch 163735, Method ICP_6020_S, Sample 20090352-01CMS: The MS recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Fe

Batch 163735, Method ICP_6020_S, Sample 20090352-01CMS: The MS recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Al, Zn

Batch 163735, Method ICP_6020_S, Sample 20090352-01CMSD: The MSD recovery was above the upper control limit. The corresponding result in the parent sample may be biased high for this analyte: Cr, V

Batch 163735, Method ICP_6020_S, Sample 20090352-01CMSD: The MSD recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: Sb

Batch 163735, Method ICP_6020_S, Sample 20090352-01CMSD: The MSD recovery was outside of the control limit. However, the MS recovery and the RPD between the MS and MSD was in control. No qualification is required for this analyte: Co, Mg, K

Batch 163735, Method ICP_6020_S, Sample 20090352-01CMSD: The MSD recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Fe, Pb

Batch 163735, Method ICP_6020_S, Sample 20090352-01CMSD: The MSD recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Al, Zn

Batch 163735, Method ICP_6020_S, Sample 20090352-01CMSD: The MSD recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Mn

Wet Chemistry:

Project: Oronogo
Work Order: 20090352

Case Narrative

No other deviations or anomalies were noted.

ALS Group, USA

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20090352

 Sample ID:
 Wildwood 01
 Lab ID:
 20090352-01

 Collection Date:
 9/2/2020 11:15 AM
 Matrix:
 SOIL

Date: 15-Sep-20

Analyses	Result	Qual	Report Limit	Dilution Units Factor		Date Analyzed
PCBS			SW8082	Pre	p: SW3546 9/8/20 13:25	Analyst: RM
Aroclor 1016	ND		0.077	mg/Kg-dry 1		9/8/2020 06:43 PM
Aroclor 1221	ND		0.077			9/8/2020 06:43 PM
Aroclor 1232	ND		0.077	mg/Kg-dry	1	9/8/2020 06:43 PM
Aroclor 1242	ND		0.077	mg/Kg-dry	1	9/8/2020 06:43 PM
Aroclor 1248	ND		0.077	mg/Kg-dry	1	9/8/2020 06:43 PM
Aroclor 1254	ND		0.077	mg/Kg-dry	1	9/8/2020 06:43 PM
Aroclor 1260	ND		0.077	mg/Kg-dry	1	9/8/2020 06:43 PM
Surr: Decachlorobiphenyl	53.8		40-140	%REC	1	9/8/2020 06:43 PM
Surr: Tetrachloro-m-xylene	58.1		45-124	%REC	1	9/8/2020 06:43 PM
PESTICIDES			SW8081	A Pre	p: SW3546 9/8/20 10:48	Analyst: RM
4,4´-DDD	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
4,4´-DDE	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
4,4´-DDT	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Aldrin	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
alpha-BHC	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
alpha-Chlordane	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
beta-BHC	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Chlordane, Technical	ND		0.029	mg/Kg-dry	1	9/8/2020 09:16 PM
delta-BHC	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Dieldrin	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Endosulfan I	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Endosulfan II	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Endosulfan sulfate	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Endrin	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Endrin aldehyde	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Endrin ketone	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
gamma-BHC (Lindane)	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
gamma-Chlordane	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Heptachlor	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Heptachlor epoxide	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Methoxychlor	ND		0.012	mg/Kg-dry	1	9/8/2020 09:16 PM
Toxaphene	ND		0.070	mg/Kg-dry	1	9/8/2020 09:16 PM
Surr: Decachlorobiphenyl	41.9	S	50-150	%REC	1	9/8/2020 09:16 PM
Surr: Tetrachloro-m-xylene	48.0	S	50-150	%REC	1	9/8/2020 09:16 PM
MERCURY BY CVAA			SW7471	B Pre	p: SW7471 9/4/20 09:35	Analyst: MAC
Mercury	0.18		0.019	mg/Kg-dry	1	9/4/2020 02:45 PM
METALS BY ICP-MS			SW6020)B Pre	p: SW3050B 9/4/20 08:02	Analyst: STP

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20090352

 Sample ID:
 Wildwood 01
 Lab ID:
 20090352-01

Date: 15-Sep-20

Collection Date: 9/2/2020 11:15 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Aluminum	8,300		380	mg/Kg-dry	100	9/8/2020 02:51 PM
Antimony	ND		0.47	mg/Kg-dry	1	9/4/2020 07:19 PM
Arsenic	5.8		0.47	mg/Kg-dry	1	9/4/2020 07:19 PM
Barium	200		4.7	mg/Kg-dry	10	9/8/2020 02:56 PM
Beryllium	0.81		0.19	mg/Kg-dry	1	9/4/2020 07:19 PM
Cadmium	3.5		0.19	mg/Kg-dry	1	9/4/2020 07:19 PM
Calcium	1,900		47	mg/Kg-dry	1	9/4/2020 07:19 PM
Chromium	16		0.47	mg/Kg-dry	1	9/4/2020 07:19 PM
Cobalt	11		0.47	mg/Kg-dry	1	9/4/2020 07:19 PM
Copper	10		0.47	mg/Kg-dry	1	9/4/2020 07:19 PM
Iron	13,000		19	mg/Kg-dry	1	9/4/2020 07:19 PM
Lead	62		0.47	mg/Kg-dry	1	9/4/2020 07:19 PM
Magnesium	530		19	mg/Kg-dry	1	9/4/2020 07:19 PM
Manganese	1,200		4.7	mg/Kg-dry	10	9/8/2020 02:56 PM
Nickel	5.7		0.47	mg/Kg-dry	1	9/4/2020 07:19 PM
Potassium	530		19	mg/Kg-dry	1	9/4/2020 07:19 PM
Selenium	0.56		0.47	mg/Kg-dry		9/4/2020 07:19 PM
Silver	ND		0.47	mg/Kg-dry	1	9/4/2020 07:19 PM
Sodium	ND		28	mg/Kg-dry	1	9/4/2020 07:19 PM
Thallium	ND		0.47	mg/Kg-dry	1	9/4/2020 07:19 PM
Vanadium	31		0.47	mg/Kg-dry	1	9/4/2020 07:19 PM
Zinc	440		94	mg/Kg-dry		9/8/2020 02:51 PM
SEMI-VOLATILE ORGANIC COI	MPOUNDS		SW846	8270D Pre	p: SW3546 9/4/20 16:35	Analyst: EE
1,1`-Biphenyl	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
2,4,5-Trichlorophenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
2,4,6-Trichlorophenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
2,4-Dichlorophenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
2,4-Dimethylphenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
2,4-Dinitrophenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
2,4-Dinitrotoluene	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
2,6-Dinitrotoluene	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
2-Chloronaphthalene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
2-Chlorophenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
2-Methylnaphthalene	0.020		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
2-Methylphenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
2-Nitroaniline	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
2-Nitrophenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
3&4-Methylphenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
3,3´-Dichlorobenzidine	ND		0.20	mg/Kg-dry	1	9/8/2020 01:11 PM
3-Nitroaniline	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM

Client: Environmental Quality Management, Inc.

Project: Oronogo
 Work Order:
 20090352

 Sample ID: Wildwood 01
 Lab ID: 20090352-01

Date: 15-Sep-20

Collection Date: 9/2/2020 11:15 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
4,6-Dinitro-2-methylphenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
4-Bromophenyl phenyl ether	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
4-Chloro-3-methylphenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
4-Chloroaniline	ND		0.080	mg/Kg-dry	1	9/8/2020 01:11 PM
4-Chlorophenyl phenyl ether	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
4-Nitroaniline	ND		0.20	mg/Kg-dry	1	9/8/2020 01:11 PM
4-Nitrophenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Acenaphthene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Acenaphthylene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Acetophenone	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Anthracene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Atrazine	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Benzaldehyde	ND		0.080	mg/Kg-dry	1	9/8/2020 01:11 PM
Benzo(a)anthracene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Benzo(a)pyrene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Benzo(b)fluoranthene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Benzo(g,h,i)perylene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Benzo(k)fluoranthene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Bis(2-chloroethoxy)methane	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Bis(2-chloroethyl)ether	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Bis(2-chloroisopropyl)ether	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Bis(2-ethylhexyl)phthalate	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Butyl benzyl phthalate	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Caprolactam	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Carbazole	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Chrysene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Dibenzo(a,h)anthracene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Dibenzofuran	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Diethyl phthalate	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Dimethyl phthalate	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Di-n-butyl phthalate	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Di-n-octyl phthalate	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Fluoranthene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Fluorene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Hexachlorobenzene	ND		0.040	mg/Kg-dry		9/8/2020 01:11 PM
Hexachlorobutadiene	ND		0.040	mg/Kg-dry		9/8/2020 01:11 PM
Hexachlorocyclopentadiene	ND		0.040	mg/Kg-dry		9/8/2020 01:11 PM
Hexachloroethane	ND		0.040	mg/Kg-dry		9/8/2020 01:11 PM
Indeno(1,2,3-cd)pyrene	ND		0.0080	mg/Kg-dry		9/8/2020 01:11 PM
Isophorone	ND		0.20	mg/Kg-dry		9/8/2020 01:11 PM

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20090352

 Sample ID:
 Wildwood 01
 Lab ID:
 20090352-01

Date: 15-Sep-20

Collection Date: 9/2/2020 11:15 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Naphthalene	0.011		0.0080	mg/Kg-dry	, 1	9/8/2020 01:11 PM
Nitrobenzene	ND		0.20	mg/Kg-dry	1	9/8/2020 01:11 PM
N-Nitrosodi-n-propylamine	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
N-Nitrosodiphenylamine	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Pentachlorophenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Phenanthrene	0.024		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Phenol	ND		0.040	mg/Kg-dry	1	9/8/2020 01:11 PM
Pyrene	ND		0.0080	mg/Kg-dry	1	9/8/2020 01:11 PM
Surr: 2,4,6-Tribromophenol	68.7		38-92	%REC	1	9/8/2020 01:11 PM
Surr: 2-Fluorobiphenyl	68.9		44-107	%REC	1	9/8/2020 01:11 PM
Surr: 2-Fluorophenol	56.3		37-109	%REC	1	9/8/2020 01:11 PM
Surr: 4-Terphenyl-d14	90.9		52-123	%REC	1	9/8/2020 01:11 PM
Surr: Nitrobenzene-d5	65.3		41-94	%REC	1	9/8/2020 01:11 PM
Surr: Phenol-d6	64.8		28-111	%REC	1	9/8/2020 01:11 PM
VOLATILE ORGANIC COMPOUND	S - LOW LEVEL		SW826	0C		Analyst: MF
1,1,1-Trichloroethane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,1,2,2-Tetrachloroethane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,1,2-Trichloroethane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,1,2-Trichlorotrifluoroethane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,1-Dichloroethane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,1-Dichloroethene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,2,4-Trichlorobenzene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,2-D bromo-3-chloropropane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,2-D bromoethane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,2-Dichlorobenzene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,2-Dichloroethane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,2-Dichloropropane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,3-Dichlorobenzene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
1,4-Dichlorobenzene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
2-Butanone	0.024		0.018	mg/Kg-dry	1.534	9/4/2020 02:25 PM
2-Methylnaphthalene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
4-Methyl-2-pentanone	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Acetone	0.15		0.018	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Benzene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Bromodichloromethane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Bromoform	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Bromomethane	ND		0.018	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Carbon disulfide	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Carbon tetrachloride	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Chlorobenzene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20090352

 Sample ID:
 Wildwood 01
 Lab ID:
 20090352-01

Date: 15-Sep-20

Collection Date: 9/2/2020 11:15 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Chloroethane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Chloroform	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Chloromethane	ND		0.018	mg/Kg-dry	1.534	9/4/2020 02:25 PM
cis-1,2-Dichloroethene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
cis-1,3-Dichloropropene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Cyclohexane	ND		0.018	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Dibromochloromethane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Dichlorodifluoromethane	ND		0.018	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Ethylbenzene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Isopropy benzene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Methyl acetate	ND		0.018	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Methyl tert-butyl ether	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Methylcyclohexane	ND		0.018	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Methylene chloride	ND		0.018	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Styrene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Tetrachloroethene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Toluene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
trans-1,2-Dichloroethene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
trans-1,3-Dichloropropene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Trichloroethene	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Trichlorofluoromethane	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Vinyl chloride	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Xylenes, Total	ND		0.0092	mg/Kg-dry	1.534	9/4/2020 02:25 PM
Surr: 1,2-Dichloroethane-d4	115		83-132	%REC	1.534	9/4/2020 02:25 PM
Surr: 4-Bromofluorobenzene	99.1		83-111	%REC	1.534	9/4/2020 02:25 PM
Surr: Dibromofluoromethane	108		77-125	%REC	1.534	9/4/2020 02:25 PM
Surr: Toluene-d8	102		86-108	%REC	1.534	9/4/2020 02:25 PM
MOISTURE			SW355	0C		Analyst: KTP
Moisture	17		0.10	% of samp	le 1	9/4/2020 01:33 PM
SUBCONTRACTED ANALYSES			SUBCO	ONTRACT		Analyst: ALS
Subcontracted Analyses	See report			as noted	1	9/15/2020

Client:

Environmental Quality Management, Inc.

QC BATCH REPORT

Date: 15-Sep-20

Work Order: 20090352 Project: Oronogo

Batch ID: 163787	Instrument	ID GC14		Metho	d: SW808	32					
MBLK	Sample ID: PBL	KS1-163787-163	787			Units: µg/l	K g	Analys	sis Date: 9/8	/2020 05:4	42 PM
Client ID:		Run ID	Run ID: GC14_200908A				2787	Prep Date: 9/8	8/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aroclor 1016		ND	67								
Aroclor 1221		ND	67								
Aroclor 1232		ND	67								
Aroclor 1242		ND	67								
Aroclor 1248		ND	67								
Aroclor 1254		ND	67								
Aroclor 1260		ND	67								
Surr: Decachlorol.	biphenyl	35.58	0	33.3		0 107	40-140		0		
Surr: Tetrachloro-	m-xylene	37.78	0	33.3		0 113	45-124		0		

LCS Sample ID: PLo	CS Sample ID: PLCSS1-163787-163787						(g	Analysis Date: 9/8/2020 05:57 PM				
Client ID:	Run ID	Run ID: GC14_200908A					2788	Prep Date: 9/8	3/2020	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Aroclor 1016	743.8	67	833		0	89.3	50-130)			
Aroclor 1260	702.1	67	833		0	84.3	50-130)			
Surr: Decachlorobiphenyl	32.57	0	33.3		0	97.8	40-140	()			
Surr: Tetrachloro-m-xylene	32.52	0	33.3		0	97.6	45-124	()			

MS	Sample ID: 20090		ι	Jnits: µg/k	(g	Analysi	is Date: 9/8	/2020 06:1	2 PM			
Client ID: Wildwood 0	1	Run ID	GC14_	200908A		Se	eqNo: 669	2789	Prep Date: 9/8	3/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aroclor 1016		749.4	66	819.2		0	91.5	40-140	(0		
Aroclor 1260		771.8	66	819.2		0	94.2	40-140	()		
Surr: Decachlorobipi	henyl	33.7	0	32.75		0	103	40-140	(0		
Surr: Tetrachloro-m-	xylene	33.96	0	32.75		0	104	45-124	()		

MSD	Sample ID: 200	Sample ID: 20090352-01C MSD							Analysis Date: 9/8/2020 06:28 PM				
Client ID: Wildw	rood 01	ood 01 Run ID: GC14_200908A						2790	Prep Date: 9/8/2	2020	DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Aroclor 1016		711.9	64	802.3		0	88.7	40-140	749.4	5.13	50		
Aroclor 1260		742.5	64	802.3		0	92.5	40-140	771.8	3.86	50		
Surr: Decachle	orobiphenyl	32.28	0	32.07		0	101	40-140	33.7	4.3	50		
Surr: Tetrachle	oro-m-xylene	32.09	0	32.07		0	100	45-124	33.96	5.67	50		

The following samples were analyzed in this batch: 20090352-01C

Note:

Work Order: 20090352 Project: Oronogo QC BATCH REPORT

Batch ID: 163788	Instrument ID GC12		Metho	d: SW808	81A					
MBLK S	ample ID: PBLKS1-163788-16	3788			Units: µg/	Kg	Analys	is Date: 9/8	/2020 11:	56 PM
Client ID:	Run	ID: GC12_	200908A		SeqNo: 6692476		Prep Date: 9/8	3/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
4,4´-DDD	ND	10								
4,4'-DDE	ND	10								
4,4´-DDT	ND	10								
Aldrin	ND	10								
alpha-BHC	ND	10								
alpha-Chlordane	ND	10								
beta-BHC	ND	10								
Chlordane, Technical	ND	25								
delta-BHC	ND	10								
Dieldrin	ND	10								
Endosulfan I	ND	10								
Endosulfan II	ND	10								
Endosulfan sulfate	ND	10								
Endrin	ND	10								
Endrin aldehyde	ND	10								
Endrin ketone	ND	10								
gamma-BHC (Lindane)	ND	10								
gamma-Chlordane	ND	10								
Heptachlor	ND	10								
Heptachlor epoxide	ND	10								
Methoxychlor	ND	10								
Toxaphene	ND	60								
Surr: Decachlorobiphe		0	33.3		0 88	50-150	76 79	0		
Surr: Tetrachloro-m-x	ylene 30.57	0	33.3		0 91.8	50-150)		

Note:

Work Order: 20090352 Project: Oronogo

Batch ID: 163788	Instrument ID GC12		Metho	d: SW808	81A							
LCS Sa	mple ID: PLCSS1-163788-163	788			Į	Units: µg/k	(g	Analysis Date: 9/9/2020 12:11 AM				
Client ID:	Run IE	CC12_	200908A		SeqNo: 669247		2477	Prep Date: 9/8	/2020	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
4,4´-DDD	28.93	10	33.33		0	86.8	50-150	C)į			
4,4'-DDE	29.3	10	33.33		0	87.9	50-150	C				
4,4'-DDT	27.62	10	33.33		0	82.9	50-150	C				
Aldrin	29.97	10	33.33		0	89.9	50-150	C				
alpha-BHC	30.18	10	33.33		0	90.6	50-150	C				
alpha-Chlordane	29.87	10	33.33		0	89.6	50-150	C)			
beta-BHC	29.53	10	33.33		0	88.6	50-150	C	D)			
delta-BHC	30.18	10	33.33		0	90.6	50-150	C				
Dieldrin	29.75	10	33.33		0	89.3	50-150	C				
Endosulfan I	29.65	10	33.33		0	89	50-150	C)			
Endosulfan II	27.35	10	33.33		0	82.1	50-150	C)			
Endosulfan sulfate	28.62	10	33.33		0	85.9	50-150	C				
Endrin	27.15	10	33.33		0	81.5	50-150	C				
Endrin aldehyde	25.32	10	33.33		0	76	50-150	C)			
Endrin ketone	30.38	10	33.33		0	91.2	50-150	C				
gamma-BHC (Lindane)	30.05	10	33.33		0	90.2	50-150	C	1			
gamma-Chlordane	28.75	10	33.33		0	86.3	50-150	C)			
Heptachlor	30.02	10	33.33		0	90.1	50-150	C	E .			
Heptachlor epoxide	30.43	10	33.33		0	91.3	50-150					
Methoxychlor	24.9	10	33.33		0	74.7	50-150	C				
Surr: Decachlorobipher	nyl 28.53	0	33.3		0	85.7	50-150	C)			
Surr: Tetrachloro-m-xyl	lene 29.65	0	33.3		0	89	50-150	C)			

Work Order: 20090352 Project: Oronogo

Client:

Batch ID: 163788	Instrument ID GC12	Method: SW8081A
------------------	--------------------	-----------------

MS Sa	mple ID: 200903	52-01C MS				ι	Jnits: µg/k	(g	Analysi	s Date: 9/8	/2020 08:	46 PM
Client ID: Wildwood 01		Run ID	GC12_	200908A		Se	qNo: 6692	2467	Prep Date: 9/8	/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
4,4´-DDD		18.04	9.7	32.42		0	55.7	50-150	()		
4,4´-DDE		17.57	9.7	32.42		0	54.2	50-150	(
4,4´-DDT		16.34	9.7	32.42		0	50.4	50-150	() j		
Aldrin		17.56	9.7	32.42		0	54.2	50-150	(
alpha-BHC		17.51	9.7	32.42		0	54	50-150	()		
alpha-Chlordane		17.75	9.7	32.42		0	54.8	50-150	()		
beta-BHC		17.33	9.7	32.42		0	53.5	50-150	(F.		
delta-BHC		17.26	9.7	32.42		0	53.3	50-150	(
Dieldrin		17.6	9.7	32.42		0	54.3	50-150	(
Endosulfan I		17.8	9.7	32.42		0	54.9	50-150	()		
Endosulfan II		17.34	9.7	32.42		0	53.5	50-150	C	1		
Endosulfan sulfate		16.71	9.7	32.42		0	51.6	50-150	(
Endrin		17.04	9.7	32.42		0	52.6	50-150	()		
Endrin aldehyde		10.11	9.7	32.42		0	31.2	50-150	(S
Endrin ketone		16.86	9.7	32.42		0	52	50-150	(
gamma-BHC (Lindane)		17.8	9.7	32.42		0	54.9	50-150	C)		
gamma-Chlordane		16.74	9.7	32.42		0	51.7	50-150	C)		
Heptachlor		17.62	9.7	32.42		0	54.4	50-150	(
Heptachlor epoxide		17.72	9.7	32.42		0	54.7	50-150	(
Methoxychlor		13.24	9.7	32.42		0	40.9	50-150	(Ĭ.		S
Surr: Decachlorobiphe	nyl	15.95	0	32.39		0	49.2	50-150	()		S
Surr: Tetrachloro-m-xy	lene	17.15	0	32.39		0	53	50-150	()		

Work Order: 20090352 Project: Oronogo QC BATCH REPORT

Batch ID: 163788	Instrument ID GC1	2 Method:	SW8081A							
MSD	Sample ID: 20090352-01	IC MSD	Units: µg/Kg	Analysis Date: 9/	/8/2020 09:01 PM					
Client ID: Wildwood	d 01	Run ID: GC12_200908A	SeqNo: 6692468	Prep Date: 9/8/2020	DF: 1					

MSD Sample ID: 20090352-01C MSD					Units: µg/Kg			Analysis Date: 9/8/202			1 PM
Client ID: Wildwood 01	Run ID	GC12_	200908A		Se	qNo: 6692	2468	Prep Date: 9/8/2	2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
4,4´-DDD	19.36	9.7	32.4		0	59.8	50-150	18.04	7.07	35	
4,4´-DDE	18.52	9.7	32.4		0	57.2	50-150	17.57	5.26	35	
4,4´-DDT	17.89	9.7	32.4		0	55.2	50-150	16.34	9.05	35	
Aldrin	18.33	9.7	32.4		0	56.6	50-150	17.56	4.3	35	
alpha-BHC	18.13	9.7	32.4		0	56	50-150	17.51	3.51	35	
alpha-Chlordane	18.63	9.7	32.4		0	57.5	50-150	17.75	4.86	35	
beta-BHC	17.95	9.7	32.4		0	55.4	50-150	17.33	3.54	35	
delta-BHC	18.31	9.7	32.4		0	56.5	50-150	17.26	5.88	35	
Dieldrin	18.76	9.7	32.4		0	57.9	50-150	17.6	6.38	35	
Endosulfan I	18.81	9.7	32.4		0	58.1	50-150	17.8	5.54	35	
Endosulfan II	18.52	9.7	32.4		0	57.2	50-150	17.34	6.56	35	
Endosulfan sulfate	17.97	9.7	32.4		0	55.5	50-150	16.71	7.25	35	
Endrin	18.23	9.7	32.4		0	56.3	50-150	17.04	6.76	35	
Endrin aldehyde	10.27	9.7	32.4		0	31.7	50-150	10.11	1.55	35	S
Endrin ketone	18.24	9.7	32.4		0	56.3	50-150	16.86	7.9	35	
gamma-BHC (Lindane)	18.75	9.7	32.4		0	57.9	50-150	17.8	5.19	35	
gamma-Chlordane	17.5	9.7	32.4		0	54	50-150	16.74	4.41	35	
Heptachlor	18.63	9.7	32.4		0	57.5	50-150	17.62	5.59	35	
Heptachlor epoxide	18.81	9.7	32.4		0	58.1	50-150	17.72	5.99	35	
Methoxychlor	14.7	9.7	32.4		0	45.4	50-150	13.24	10.4	35	S
Surr: Decachlorobiphenyl	17.37	0	32.37		0	53.7	50-150	15.95	8.52	35	
Surr: Tetrachloro-m-xylene	17.97	0	32.37		0	55.5	50-150	17.15	4.67	35	

The following samples were analyzed in this batch:

20090352-01C

Work Order: 20090352 Project: Oronogo

MBLK	Sample ID: MBLK-1637	43-16374	3			Units: mg/	Kg	Analysis	Date: 9/4/	/2020 01:52 PM	
Client ID:		Run ID	: HG4_20	00904A		SeqNo: 668	7369	Prep Date: 9/4/	2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		ND	0.020								
LCS	Sample ID: LCS-16374	3-163743				Units: mg/	Kg	Analysis	Date: 9/4/	2020 01:5	9 PM
Client ID:		Run ID	: HG4_2	00904A		SeqNo: 668	7373	Prep Date: 9/4/	2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		0.1758	0.020	0.1665		0 106	80-120	0			
MS	Sample ID: 20082277-0	1DMS				Units: mg/	Kg	Analysis	Date: 9/4/	2020 02:0	3 PM
Client ID:		Run ID	: HG4_2	00904A		SeqNo: 6687	7375	Prep Date: 9/4/	2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		0.2354	0.018	0.1537	0.0943	8 91.7	75-125	0			
MSD	Sample ID: 20082277-0	1DMSD				Units: mg/	Kg	Analysis	Date: 9/4/	2020 02:0	4 PM
Client ID:		Run ID	: HG4_20	00904A		SeqNo: 6687	7376	Prep Date: 9/4/	2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		0.2367	0.019	0.1561	0.0943	8 91.2	75-125	0.2354	0.565	35	

Work Order: 20090352 Project: Oronogo

Batch ID: 163735	Instrument ID ICPMS4		Method	: SW602	20B					
MBLK	Sample ID: MBLK-163735-163735	5			Units: mg/	Kg	Analys	is Date: 9/4	/2020 07:	13 PM
Client ID:	Run ID	ICPMS4	_200904B		SeqNo: 668	7305	Prep Date: 9/4	/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Aluminum	ND	2.0								
Antimony	ND	0.25								
Arsenic	ND	0.25								
Barium	ND	0.25								
Beryllium	ND	0.10								
Cadmium	ND	0.10								
Calcium	ND	25								
Chromium	ND	0.25								
Cobalt	ND	0.25								
Copper	ND	0.25								
Iron	ND	10								
Lead	ND	0.25								
Magnesium	ND	10								
Manganese	ND	0.25								
Nickel	ND	0.25								
Potassium	ND	10							·	
Selenium	ND	0.25								
Silver	ND	0.25							·	
Sodium	ND	15								
Thallium	ND	0.25								
Vanadium	ND	0.25								
Zinc	ND	0.50								

Environmental Quality Management, Inc. Client:

Work Order: 20090352 Project: Oronogo

Batch ID: 163735	Instrument ID ICPMS4 Method: SW6020B										
LCS	Sample ID: LCS-163735-163735					Units: mg/	Kg	Analysis Date: 9/4/2020 07:14 PM			
Client ID:	Run ID	: ICPMS	4_200904B		Se	eqNo: 668	7306	Prep Date: 9/4	/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	4.886	2.0	5		0	97.7	80-120	()		
Antimony	4.863	0.25	5		0	97.3	80-120	()		
Arsenic	4.642	0.25	5		0	92.8	80-120	()		
Barium	4.995	0.25	5		0	99.9	80-120	()		
Beryllium	4.964	0.10	5		0	99.3	80-120	C)		
Cadmium	4.963	0.10	5		0	99.3	80-120	()		
Calcium	507.8	25	500		0	102	80-120	()		
Chromium	4.986	0.25	5		0	99.7	80-120	()		
Cobalt	4.881	0.25	5		0	97.6	80-120	()		
Copper	4.932	0.25	5		0	98.6	80-120	()		
Iron	490.7	10	500		0	98.1	80-120	()		
Lead	5.002	0.25	5		0	100	80-120	()		
Magnesium	496.7	10	500		0	99.3	80-120	()		
Manganese	4.81	0.25	5		0	96.2	80-120)		
Nickel	4.812	0.25	5		0	96.2	80-120	()		
Potassium	495.4	10	500		0	99.1	80-120	()		
Selenium	4.832	0.25	5		0	96.6	80-120	()		
Silver	5.155	0.25	5		0	103	80-120	()		
Sodium	506.5	15	500		0	101	80-120	()		
Thallium	4.832	0.25	5		0	96.6	80-120	()		
Vanadium	5.196	0.25	5		0	104	80-120	()		
Zinc	4.816	0.50	5		0	96.3	80-120	()		

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20090352 Project: Oronogo

Dater ID. 100/00 Instrument ID ICI WO4	Batch ID: 163735	Instrument ID ICPMS4	Method: SW6020B
--	------------------	----------------------	-----------------

MS	Sample ID: 20	090352-01CMS				Units: mg/	Kg	Analysi	s Date: 9/4	/2020 07:	21 PM
Client ID: Wildwood	01	Run ID	: ICPMS	4_200904B		SeqNo: 668	7310	Prep Date: 9/4	/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Antimony		4.957	0.38	7.692	0.217	1 61.6	75-125	()		S
Arsenic		11.76	0.38	7.692	4.81	5 90.3	75-125	()		
Beryllium		8.274	0.15	7.692	0.675	4 98.8	75-125)		
Cadmium		9.162	0.15	7.692	2.88	8 81.6	75-125	()		
Calcium		2200	38	769.2	154	9 84.7	75-125	()		
Chromium		29.89	0.38	7.692	13.6	6 211	75-125	()		S
Cobalt		16.46	0.38	7.692	9.16	6 94.8	75-125	()		
Copper		14.72	0.38	7.692	8.27	3 83.8	75-125	()		
Iron		14340	15	769.2	1053	0 495	75-125	()		SEC
Lead		60.39	0.38	7.692	51.1	7 120	75-125	()		0
Magnesium		1369	15	769.2	442.	4 120	75-125	()		
Nickel		12.59	0.38	7.692	4.7	2 102	75-125	()		
Potassium		1385	15	769.2	438.	9 123	75-125	()		
Selenium		6.676	0.38	7.692	0.466	8 80.7	75-125	()		
Silver		6.515	0.38	7.692	0.0322	2 84.3	75-125	()		
Sodium		732.2	23	769.2	16.3	8 93.1	75-125	()	·	
Thallium		7.23	0.38	7.692	0.120	3 92.4	75-125	()		
Vanadium	-	42.24	0.38	7.692	25.3	7 219	75-125	()		S

MS	AS Sample ID: 20090352					Units: mg/Kg		Analysis Date: 9/8/2020 02:53 PM			
Client ID: Wildw	vood 01	Run ID	ICPMS	4_200908B		SeqNo: 668	9112	Prep Date: 9/4	/2020	DF: 10	0
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum		12230	310	7.692	679	95 70700	75-125	C			SO
Zinc		373.3	77	7.692	356	.8 213	75-125	C	D		SO

MS Sample ID: 20090352-01CMS				Units: mg/Kg				Analysis Date: 9/8/2020 02:57 PM				
Client ID: Wild	wood 01	Run ID	: ICPMS	4_200908B		SeqNo: 668	9115	Prep Date: 9/4	4/2020	DF: 10	i	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Barium		192.4	3.8	7.692	162.	3 391	75-125		0		SO	
Manganese		1146	3.8	7.692	980.	2 2160	75-125		0		SO	

Work Order: 20090352 Project: Oronogo QC BATCH REPORT

Batch ID: 163735	Instrument ID ICPMS4		Metho	d: SW6020B	Ž					
MSD S	Sample ID: 20090352-01CMSD				Units: mg/	Kg	Analysis	Date: 9/4/	2020 07:2	3 PM
Client ID: Wildwood 0	1 Run l	D: ICPMS	4_200904B	Se	eqNo: 668	7311	Prep Date: 9/4/2	2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	5.051	0.39	7.716	0.2171	62.6	75-125	4.957	1.87	20	S
Arsenic	11.39	0.39	7.716	4.815	85.2	75-125	11.76	3.23	20	
Beryllium	8.381	0.15	7.716	0.6754	99.9	75-125	8.274	1.29	20	
Cadmium	9.327	0.15	7.716	2.888	83.5	75-125	9.162	1.79	20	
Calcium	2305	39	771.6	1549	98	75-125	2200	4.65	20	
Chromium	24.89	0.39	7.716	13.66	145	75-125	29.89	18.3	20	S
Cobalt	14.76	0.39	7.716	9.166	72.6	75-125	16.46	10.9	20	S
Copper	15.71	0.39	7.716	8.273	96.4	75-125	14.72	6.5	20	
Iron	12890	15	771.6	10530	305	75-125	14340	10.7	20	SO
Lead	62.68	0.39	7.716	51.17	149	75-125	60.39	3.73	20	SO
Magnesium	1413	15	771.6	442.4	126	75-125	1369	3.14	20	S
Nickel	12.33	0.39	7.716	4.72	98.7	75-125	12.59	2.09	20	
Potassium	1411	15	771.6	438.9	126	75-125	1385	1.85	20	S
Selenium	6.833	0.39	7.716	0.4668	82.5	75-125	6.676	2.32	20	
Silver	6.651	0.39	7.716	0.03222	85.8	75-125	6.515	2.06	20	
Sodium	743.5	23	771.6	16.38	94.2	75-125	732.2	1.54	20	
Thallium	7.408	0.39	7.716	0.1203	94.4	75-125	7.23	2.43	20	
Vanadium	37.28	0.39	7.716	25.37	154	75-125	42.24	12.5	20	S
MSD S	Sample ID: 20090352-01CMSD				Units: mg/	Kg	Analysis	Date: 9/8/	2020 02:5	4 PM
Client ID: Wildwood 0	1 Run	D: ICPMS	4_200908B	Se	eqNo: 668	9113	Prep Date: 9/4/2	2020	DF: 10	0
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	12080	310	7.716	6795	68400	75-125	11850	1.86	20	SO
Zinc	389.7	77	7.716	356.8	426	75-125	365	6.55	20	SO
MSD 5	Sample ID: 20090352-01CMSD				Units: mg/	Kg	Analysis	Date: 9/8/	2020 02:5	9 PM
Client ID: Wildwood 0	1 Run l	D: ICPMS	4_200908B	Se	eqNo: 668	9116	Prep Date: 9/4/2	2020	DF: 10	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Barium	169.2	3.9	7.716	162.3	89.5	75-125	192.4	12.8	20	0

20090352-01C

The following samples were analyzed in this batch:

Note:

Work Order: 20090352 Project: Oronogo

Client:

Batch ID: 163752	Instrument ID SVMS8		Metho	d: SW84 6	8270D							
MBLK Sai	mple ID: SBLKS1-163752-163	752			Units: µg/k	(g	Analysis Date: 9/8/2020 12:29 PM					
Client ID:	Run ID	SVMS8	_200908A		SeqNo: 6689	9134	Prep Date: 9/4	/2020	DF: 1			
				SPK Ref		Control	RPD Ref		RPD			
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua		
1,1`-Biphenyl	ND	33										
2,4,5-Trichlorophenol	ND	33										
2,4,6-Trichlorophenol	ND	33										
2,4-Dichlorophenol	ND	33										
2,4-Dimethylphenol	ND	33										
2,4-Dinitrophenol	ND	33										
2,4-Dinitrotoluene	ND	33										
2,6-Dinitrotoluene	ND	33										
2-Chloronaphthalene	ND	6.7										
2-Chlorophenol	ND ND	33										
2-Methylnaphthalene	ND ND	6.7										
2-Methylphenol	ND ND	33										
2-Nitroaniline	ND	33										
2-Nitrophenol	ND ND	33										
3&4-Methylphenol	ND	33										
3,3'-Dichlorobenzidine	ND ND	170										
3-Nitroaniline	ND	33										
4,6-Dinitro-2-methylpheno		33										
4-Bromophenyl phenyl eth		33										
4-Chloro-3-methylphenol	ND ND	33										
4-Chloroaniline	ND ND	67										
	11/47/2000											
4-Chlorophenyl phenyl eth 4-Nitroaniline	ner ND	33										
4-Nitrophenol	ND ND	170 33										
	ND ND											
Acenaphthelee	ND ND	6.7										
Acenaphthylene												
Acetophenone	ND ND	33										
Anthracene		6.7										
Atrazine	ND ND	33										
Benzaldehyde	ND ND	67										
Benzo(a)anthracene	ND ND	6.7										
Benzo(a)pyrene	ND ND	6.7										
Benzo(b)fluoranthene	ND ND	6.7										
Benzo(g,h,i)perylene	ND	6.7										
Benzo(k)fluoranthene	ND ND	6.7										
Bis(2-chloroethoxy)metha		33										
Bis(2-chloroethyl)ether	ND ND	33										
Bis(2-chloroisopropyl)ethe		33										
Bis(2-ethylhexyl)phthalate		33										
Butyl benzyl phthalate	ND	33										
Caprolactam	ND	33										
Carbazole	ND	33										

Work Order: 20090352 Project: Oronogo

Batch ID: 163752	Instrument ID SVMS8		Method	SW846 827	0D			
Chrysene	ND	6.7						
Dibenzo(a,h)anthracene	ND	6.7						
Dibenzofuran	ND	33						
Diethyl phthalate	ND	33						
Dimethyl phthalate	ND	33						
Di-n-butyl phthalate	ND	33						
Di-n-octyl phthalate	ND	33						
Fluoranthene	ND	6.7						
Fluorene	ND	6.7						
Hexachlorobenzene	ND	33						
Hexachlorobutadiene	ND	33						
Hexachlorocyclopentadiene	ND	33						
Hexachloroethane	ND	33						
Indeno(1,2,3-cd)pyrene	ND	6.7						
Isophorone	ND	170						
Naphthalene	ND	6.7						
Nitrobenzene	ND	170						
N-Nitrosodi-n-propylamine	ND	33						
N-Nitrosodiphenylamine	ND	33						
Pentachlorophenol	ND	33						
Phenanthrene	ND	6.7						
Phenol	ND	33						
Pyrene	ND	6.7						
Surr: 2,4,6-Tribromophen	ol 2025	0	3333	0	60.8	38-92	0	
Surr: 2-Fluorobiphenyl	2205	0	3333	0	66.1	44-107	0	
Surr: 2-Fluorophenol	2199	0	3333	0	66	37-109	0	
Surr: 4-Terphenyl-d14	2884	0	3333	0	86.5	52-123	0	
Surr: Nitrobenzene-d5	2221	0	3333	0	66.6	41-94	0	
Surr: Phenol-d6	2416	0	3333	0	72.5	28-111	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20090352 Project: Oronogo

Batch ID: 163752 Instrument ID SVMS8 Method: SW846 8270D

LCS Sample ID: SL	CSS1-163752-163	752			ι	Jnits: µg/k	(g	Analysis	Date: 9/8	/2020 12:	50 PM
Client ID:	Run ID	SVMS8	_200908A		Se	qNo: 668	9135	Prep Date: 9/4/	2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1'-Biphenyl	968.7	33	1333		0	72.7	53-97	0			
2,4,5-Trichlorophenol	906.7	33	1333		0	68	52-111	0			
2,4,6-Trichlorophenol	898.7	33	1333		0	67.4	46-105				
2,4-Dichlorophenol	874.7	33	1333		0	65.6	47-96	0			
2,4-Dimethylphenol	965.3	33	1333		0	72.4	49-97	0			
2,4-Dinitrophenol	496	33	1333		0	37.2	10-106	0			
2,4-Dinitrotoluene	990	33	1333		0	74.3	58-110	V 1940			
2,6-Dinitrotoluene	979.3	33	1333		0	73.5	59-108	0			
2-Chloronaphthalene	926	6.7	1333		0	69.5	56-104	0			
2-Chlorophenol	883.3	33	1333		0	66.3	50-104	0			
2-Methylnaphthalene	936.7	6.7	1333		0	70.3	54-96	0			
2-Methylphenol	910	33	1333		0	68.3	49-105	0			
2-Nitroaniline	940.7	33	1333		0	70.6	54-107	0			
2-Nitrophenol	931.3	33	1333		0	69.9	51-94	0			
3&4-Methylphenol	916.7	33	1333		0	68.8	48-105	0			
3,3'-Dichlorobenzidine	884.7	170	1333		0	66.4	39-99	0			
3-Nitroaniline	526.7	33	1333		0	39.5	17-92	0			
1,6-Dinitro-2-methylphenol	787.3	33	1333		0	59.1	32-103	0			
1-Bromophenyl phenyl ether	994.7	33	1333		0	74.6	60-106	0			
4-Chloro-3-methylphenol	916	33	1333		0	68.7	51-101	0			
4-Chloroaniline	866.7	67	1333		0	65	27-110				
4-Chlorophenyl phenyl ether	972	33	1333		0	72.9	58-106				
4-Nitroaniline	718	170	1333		0	53.9	21-100	0			
4-Nitrophenol	1015	33	1333		0	76.1	29-120	0			
Acenaphthene	953.3	6.7	1333		0	71.5	55-101	0			
Acenaphthylene	998.7	6.7	1333		0	74.9	59-106				
Acetophenone	961.3	33	1333		0	72.1	51-100	0			
Anthracene	992.7	6.7	1333		0	74.5	67-105	0			
Atrazine	1048	33	1333		0	78.6	45-125	0			
Benzaldehyde	304	67	1333		0	22.8	10-120	0			
Benzo(a)anthracene	1021	6.7	1333		0	76.6	68-105				
Benzo(a)pyrene	994	6.7	1333		0	74.6	68-110				
Benzo(b)fluoranthene	1017	6.7	1333		0	76.3	65-110				
Benzo(g,h,i)perylene	1116	6.7	1333		0	83.7	60-120				
Benzo(k)fluoranthene	1016	6.7	1333		0	76.2	66-113				
Bis(2-chloroethoxy)methane	930	33	1333		0	69.8	53-96	0			
Bis(2-chloroethyl)ether	939.3	33	1333		0	70.5	47-108				
Bis(2-chloroisopropyl)ether	924	33	1333		0	69.3	47-107				
Bis(2-ethylhexyl)phthalate	1068	33	1333		0	80.1	59-117				
Butyl benzyl phthalate	952	33	1333		0	71.4	59-106				
Caprolactam	916.7	33	1333		0	68.8	42-105				
Carbazole	981.3	33	1333		0	73.6	67-108				

Work Order: 20090352 Project: Oronogo

Batch ID: 163752	Instrument ID SVMS8		Method:	SW846 827	0D			
Chrysene	1017	6.7	1333	0	76.3	68-108	0	
Dibenzo(a,h)anthracene	1094	6.7	1333	0	82.1	62-119	0	
Dibenzofuran	948.7	33	1333	0	71.2	60-104	0	
Diethyl phthalate	992	33	1333	0	74.4	62-111	0	
Dimethyl phthalate	967.3	33	1333	0	72.6	62-106	0	
Di-n-butyl phthalate	1050	33	1333	0	78.8	59-105	0	
Di-n-octyl phthalate	1035	33	1333	0	77.7	51-123	0	
Fluoranthene	998	6.7	1333	0	74.9	67-106	0	
Fluorene	949.3	6.7	1333	0	71.2	59-107	0	
Hexachlorobenzene	999.3	33	1333	0	75	62-103	0	
Hexachlorobutadiene	964.7	33	1333	0	72.4	51-94	0	
Hexachlorocyclopentadiene	962	33	1333	0	72.2	25-120	0	
Hexachloroethane	908.7	33	1333	0	68.2	55-93	0	
Indeno(1,2,3-cd)pyrene	1108	6.7	1333	0	83.1	56-120	0	
Isophorone	950.7	170	1333	0	71.3	52-99	0	
Naphthalene	909.3	6.7	1333	0	68.2	46-98	0	
Nitrobenzene	930.7	170	1333	0	69.8	53-95	0	
N-Nitrosodi-n-propylamine	932.7	33	1333	0	70	50-104	0	
N-Nitrosodiphenylamine	980	33	1333	0	73.5	63-107	0	
Pentachlorophenol	802	33	1333	0	60.2	34-106	0	
Phenanthrene	978.7	6.7	1333	0	73.4	66-101	0	
Phenol	990.7	33	1333	0	74.3	44-109	0	
Pyrene	994	6.7	1333	0	74.6	60-119	0	
Surr: 2,4,6-Tribromophen	ol 2513	0	3333	0	75.4	38-92	0	
Surr: 2-Fluorobiphenyl	2431	0	3333	0	72.9	44-107	0	
Surr: 2-Fluorophenol	2333	0	3333	0	70	37-109	0	
Surr: 4-Terphenyl-d14	2795	0	3333	0	83.8	52-123	0	
Surr: Nitrobenzene-d5	2468	0	3333	0	74	41-94	0	
Surr: Phenol-d6	2495	0	3333	0	74.8	28-111	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20090352 Project: Oronogo

Batch ID: 163752 Instrument ID SVMS8 Method: SW846 8270D

MS Sample ID: 200	090017-01B MS				U	Jnits: µg/k	(g	Analysis	s Date: 9/8	/2020 01:	54 PM
Client ID:	Run II	D: SVMS8	_200908A		Se	qNo: 668	9138	Prep Date: 9/4	2020	DF: 10)
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1'-Biphenyl	944.6	330	1321		0	71.5	53-97	0			
2,4,5-Trichlorophenol	812.5	330	1321		0	61.5	52-111	0			
2,4,6-Trichlorophenol	852.1	330	1321		0	64.5	46-105	0			
2,4-Dichlorophenol	852.1	330	1321		0	64.5	47-96	0			
2,4-Dimethylphenol	898.3	330	1321		0	68	49-97	0			
2,4-Dinitrophenol	ND	330	1321		0	0	10-106	0			S
2,4-Dinitrotoluene	891.7	330	1321		0	67.5	58-110	0			J
2,6-Dinitrotoluene	957.8	330	1321		0	72.5	59-108	0	vi		
2-Chloronaphthalene	819.1	66	1321		0	62	56-104	0			
2-Chlorophenol	865.3	330	1321		0	65.5	50-104	0			
	904.9	66	1321		0	68.5	54-96	0			
2-Methylnaphthalene	924.8	330	8767353		0	70	49-105	0	0		
2-Methylphenol	898.3	330	1321				Control of Control				
2-Nitroaniline	838.9	SCALE OF S	1321		0	68	54-107	0	**		
2-Nitrophenol	951.2	330	1321		0	63.5	51-94	0			
3&4-Methylphenol	951.2	330	1321		0	72	48-105	0			- 8
3,3'-Dichlorobenzidine		1,700	1321		0	52	39-99	0			J
3-Nitroaniline	904.9	330	1321		0	68.5	17-92	0			
4,6-Dinitro-2-methylphenol	515.2	330	1321		0	39	32-103	0			
4-Bromophenyl phenyl ether	885.1	330	1321		0	67	60-106	0			
4-Chloro-3-methylphenol	924.8	330	1321		0	70	51-101	0			
4-Chloroaniline	627.5	660	1321		0	47.5	27-110	0			J
4-Chlorophenyl phenyl ether	911.6	330	1321		0	69	58-106	0			
4-Nitroaniline	924.8	1,700	1321		0	70	21-100	0			J
4-Nitrophenol	1050	330	1321		0	79.5	29-120	0			
Acenaphthene	911.6	66	1321		0	69	55-101	0	14		
Acenaphthylene	904.9	66	1321		0	68.5	59-106	0			
Acetophenone	984.2	330	1321		0	74.5	51-100	0			
Anthracene	918.2	66	1321		0	69.5	67-105	0			
Atrazine	1030	330	1321		0	78	45-125	0	V-1		
Benzaldehyde	ND	660	1321		0	0	10-120	0			S
Benzo(a)anthracene	1044	66	1321	10	05	71.1	68-105	0	ĺ.		
Benzo(a)pyrene	1017	66	1321		0	77	68-110	0			
Benzo(b)fluoranthene	1070	66	1321		0	81	65-110	0			
Benzo(g,h,i)perylene	871.9	66	1321		0	66	60-120	0			
Benzo(k)fluoranthene	971	66	1321		0	73.5	66-113	0	<u> </u>		
Bis(2-chloroethoxy)methane	871.9	330	1321		0	66	53-96	0			
Bis(2-chloroethyl)ether	964.4	330	1321		0	73	47-108	0	<u> </u>		
Bis(2-chloroisopropyl)ether	990.8	330	1321		0	75	47-107	0			
Bis(2-ethylhexyl)phthalate	871.9	330	1321		0	66	59-117	0			
Butyl benzyl phthalate	891.7	330	1321		0	67.5	59-106	0			
Caprolactam	944.6	330	1321		0	71.5	42-105	0			
Carbazole	938	330	1321		0	71	67-108				

Work Order: 20090352 Project: Oronogo

Batch ID: 163752	Instrument ID SVMS8		Method:	SW846 827	70D			
Chrysene	990.8	66	1321	85.3	68.6	68-108	0	
Dibenzo(a,h)anthracene	792.7	66	1321	0	60	62-119	0	S
Dibenzofuran	931.4	330	1321	0	70.5	60-104	0	
Diethyl phthalate	891.7	330	1321	0	67.5	62-111	0	
Dimethyl phthalate	891.7	330	1321	0	67.5	62-106	0	
Di-n-butyl phthalate	911.6	330	1321	0	69	59-105	0	
Di-n-octyl phthalate	1130	330	1321	0	85.5	51-123	0	
Fluoranthene	1070	66	1321	131.2	71.1	67-106	0	
Fluorene	871.9	66	1321	0	66	59-107	0	
Hexachlorobenzene	852.1	330	1321	0	64.5	62-103	0	
Hexachlorobutadiene	832.3	330	1321	0	63	51-94	0	
Hexachlorocyclopentadiene	488.8	330	1321	0	37	25-120	0	
Hexachloroethane	838.9	330	1321	0	63.5	55-93	0	
Indeno(1,2,3-cd)pyrene	898.3	66	1321	0	68	56-120	0	
Isophorone	898.3	1,700	1321	0	68	52-99	0	J
Naphthalene	865.3	66	1321	0	65.5	46-98	0	
Nitrobenzene	885.1	1,700	1321	0	67	53-95	0	J
N-Nitrosodi-n-propylamine	944.6	330	1321	0	71.5	50-104	0	
N-Nitrosodiphenylamine	885.1	330	1321	0	67	63-107	0	
Pentachlorophenol	554.9	330	1321	0	42	34-106	0	
Phenanthrene	1011	66	1321	0	76.5	66-101	0	
Phenol	924.8	330	1321	0	70	44-109	0	
Pyrene	1004	66	1321	118.1	67.1	60-119	0	
Surr: 2,4,6-Tribromophen	ol 2054	0	3302	0	62.2	38-92	0	
Surr: 2-Fluorobiphenyl	2120	0	3302	0	64.2	44-107	0	
Surr: 2-Fluorophenol	2081	0	3302	0	63	37-109	0	
Surr: 4-Terphenyl-d14	2325	0	3302	0	70.4	52-123	0	
Surr: Nitrobenzene-d5	2226	0	3302	0	67.4	41-94	0	
Surr: Phenol-d6	2246	0	3302	0	68	28-111	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20090352 Project: Oronogo

Batch ID: 163752 Instrument ID SVMS8 Method: SW846 8270D

MSD Sample ID: 20	090017-01B MSD				U	Jnits: µg/k	(g	Analysis	Date: 9/8/	2020 02:1	6 PM
Client ID:	Run II	D: SVMS8	_200908A		Se	qNo: 6689	9139	Prep Date: 9/4/2	2020	DF: 10	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1`-Biphenyl	947.8	330	1325		0	71.5	53-97	944.6	0.344	30	
2,4,5-Trichlorophenol	828.5	330	1325		0	62.5	52-111	812.5	1.96	30	
2,4,6-Trichlorophenol	848.4	330	1325		0	64	46-105	852.1	0.434	30	
2,4-Dichlorophenol	841.8	330	1325		0	63.5	47-96	852.1	1.22	30	
2,4-Dimethylphenol	881.6	330	1325		0	66.5	49-97	898.3	1.89	30	
2,4-Dinitrophenol	503.7	330	1325		0	38	10-106	030.3	200	30	R
2,4-Dinitrotoluene	848.4	330	1325		0	64	58-110	891.7	4.98	30	- 1
2,6-Dinitrotoluene	947.8	330	1325		0	71.5	59-108	957.8	1.05	30	
2-Chloronaphthalene	874.9	66	1325		0	66	56-104	819.1	6.59	30	
2-Chlorophenol	874.9	330	1325		0	66	50-104	865.3	1.1	30	
2-Methylnaphthalene	928	66	1325		0	70	54-96	904.9	2.51	30	
2-Methylphenol	901.4	330	1325		0	68	49-105	924.8	2.55	30	
2-Nitroaniline	855	330	1325		0	64.5	54-107	898.3	4.94	30	
2-Nitrophenol	855	330	1325		0	64.5	51-94	838.9	1.91	30	
3&4-Methylphenol	881.6	330	1325		0	66.5	48-105	951.2	7.6	30	
3,3'-Dichlorobenzidine	696	1,700	1325		0	52.5	39-99	687	0	30	J
3-Nitroaniline	855	330	1325		0	64.5	17-92	904.9	5.67	30	-
,6-Dinitro-2-methylphenol	550.1	330	1325		0	41.5	32-103	515.2	6.55	30	
I-Bromophenyl phenyl ether	994.2	330	1325		0	75	60-106	885.1	11.6	30	
-Chloro-3-methylphenol	855	330	1325		0	64.5	51-101	924.8	7.84	30	
I-Chloroaniline	656.2	670	1325		0	49.5	27-110	627.5	0	30	J
4-Chlorophenyl phenyl ether	908.1	330	1325		0	68.5	58-106	911.6	0.383	30	
I-Nitroaniline	808.6	1,700	1325		0	61	21-100	924.8	0.000	30	J
1-Nitrophenol	888.2	330	1325		0	67	29-120	1050	16.7	30	1,714
Acenaphthene	1001	66	1325		0	75.5	55-101	911.6	9.34	30	
Acenaphthylene	934.6	66	1325		0	70.5	59-106	904.9	3.22	30	
Acetophenone	908.1	330	1325		0	68.5	51-100	984.2	8.05	30	
Anthracene	928	66	1325		0	70	67-105	918.2	1.06	30	
Atrazine	947.8	330	1325		0	71.5	45-125	1030	8.35	30	
Benzaldehyde	536.9	670	1325		0	40.5	10-120	409.5	0	30	J
Benzo(a)anthracene	1034	66	1325	10		70.1	68-105	1044	0.93	30	
Benzo(a)pyrene	994.2	66	1325		0	75	68-110	1017	2.29	30	
Benzo(b)fluoranthene	1061	66	1325		0	80	65-110		0.897	30	
Benzo(g,h,i)perylene	1034	66	1325		0	78	60-120	871.9	17	30	
Benzo(k)fluoranthene	928	66	1325		0	70	66-113		4.53	30	
Bis(2-chloroethoxy)methane	881.6	330	1325		0	66.5	53-96	871.9	1.1	30	
Bis(2-chloroethyl)ether	947.8	330	1325		0	71.5	47-108	964.4	1.73	30	
Bis(2-chloroisopropyl)ether	987.6	330	1325		0	74.5	47-107	990.8	0.325	30	
Bis(2-ethylhexyl)phthalate	921.3	330	1325		0	69.5	59-117		5.51	30	
Butyl benzyl phthalate	961.1	330	1325		0	72.5	59-106	891.7	7.49	30	
Caprolactam	702.6	330	1325		0	53	42-105		29.4	30	
Carbazole	894.8	330	1325		0	67.5	67-108		4.71	30	

Work Order: 20090352 Project: Oronogo

QC BATCH REPORT

Batch ID: 163752	Instrument ID SVMS8		Method:	SW846 827	70D					
Chrysene	1001	66	1325	85.3	69.1	68-108	990.8	1.01	30	
Dibenzo(a,h)anthracene	954.5	66	1325	0	72	62-119	792.7	18.5	30	
Dibenzofuran	928	330	1325	0	70	60-104	931.4	0.368	30	
Diethyl phthalate	908.1	330	1325	0	68.5	62-111	891.7	1.81	30	
Dimethyl phthalate	881.6	330	1325	0	66.5	62-106	891.7	1.15	30	
Di-n-butyl phthalate	934.6	330	1325	0	70.5	59-105	911.6	2.49	30	
Di-n-octyl phthalate	1100	330	1325	0	83	51-123	1130	2.62	30	
Fluoranthene	967.7	66	1325	131.2	63.1	67-106	1070	10	30	S
Fluorene	881.6	66	1325	0	66.5	59-107	871.9	1.1	30	
Hexachlorobenzene	934.6	330	1325	0	70.5	62-103	852.1	9.23	30	
Hexachlorobutadiene	908.1	330	1325	0	68.5	51-94	832.3	8.71	30	
Hexachlorocyclopentadiene	629.7	330	1325	0	47.5	25-120	488.8	25.2	30	
Hexachloroethane	908.1	330	1325	0	68.5	55-93	838.9	7.92	30	
Indeno(1,2,3-cd)pyrene	947.8	66	1325	0	71.5	56-120	898.3	5.36	30	
Isophorone	928	1,700	1325	0	70	52-99	898.3	0	30	J
Naphthalene	888.2	66	1325	0	67	46-98	865.3	2.61	30	
Nitrobenzene	921.3	1,700	1325	0	69.5	53-95	885.1	0	30	J
N-Nitrosodi-n-propylamine	874.9	330	1325	0	66	50-104	944.6	7.66	30	
N-Nitrosodiphenylamine	947.8	330	1325	0	71.5	63-107	885.1	6.84	30	
Pentachlorophenol	642.9	330	1325	0	48.5	34-106	554.9	14.7	30	
Phenanthrene	1007	66	1325	0	76	66-101	1011	0.312	30	
Phenol	908.1	330	1325	0	68.5	44-109	924.8	1.82	30	
Pyrene	1114	66	1325	118.1	75.1	60-119	1004	10.3	30	
Surr: 2,4,6-Tribromophen	ol 2148	0	3314	0	64.8	38-92	2054	4.44	40	
Surr: 2-Fluorobiphenyl	2234	0	3314	0	67. <i>4</i>	44-107	2120	5.21	40	
Surr: 2-Fluorophenol	2041	0	3314	0	61.6	37-109	2081	1.9	40	
Surr: 4-Terphenyl-d14	2744	0	3314	0	82.8	52-123	2325	16.5	40	
Surr: Nitrobenzene-d5	2273	0	3314	0	68.6	41-94	2226	2.11	40	
Surr: Phenol-d6	2201	0	3314	0	66.4	28-111	2246	2.04	40	

The following samples were analyzed in this batch:

20090352-01C

Work Order: 20090352 Project: Oronogo

Batch ID: R297438	Instrument ID VMS8		Metrio	d: SW826	50C					
MBLK Sampl	le ID: VBLKS1-200904-R29	7438			Units: µg/l	K g	Analys	is Date: 9/4	/2020 12:	06 PM
Client ID:	Run IE	: VMS8_	200904A		SeqNo: 668	4988	Prep Date:		DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua
1,1,1-Trichloroethane	ND	5.0								
1,1,2,2-Tetrachloroethane	ND	5.0								
1,1,2-Trichloroethane	ND	5.0								
1,1,2-Trichlorotrifluoroethane	nD ND	5.0								
1,1-Dichloroethane	ND	5.0								
1,1-Dichloroethene	ND	5.0								
1,2,4-Trichlorobenzene	ND	5.0								
1,2-D bromo-3-chloropropane	e ND	5.0								
1,2-D bromoethane	ND	5.0								
1,2-Dichlorobenzene	ND	5.0								
1,2-Dichloroethane	ND	5.0								
1,2-Dichloropropane	ND	5.0								
1,3-Dichlorobenzene	ND	5.0								
1,4-Dichlorobenzene	ND	5.0								
2-Butanone	ND	10								
2-Methylnaphthalene	ND	5.0								
4-Methyl-2-pentanone	ND	5.0								
Acetone	ND	10								
Benzene	ND	5.0								
Bromodichloromethane	ND ND	5.0								
	ND ND									
Bromoform	ND ND	5.0								
Bromomethane		10								
Carbon disulfide	ND ND	5.0								
Carbon tetrachloride	ND	5.0								
Chlorobenzene	ND ND	5.0								
Chloroethane	ND	5.0								
Chloroform	ND	5.0								
Chloromethane	ND	10								
cis-1,2-Dichloroethene	ND	5.0								
cis-1,3-Dichloropropene	ND	5.0								
Cyclohexane	ND	10								
Dibromochloromethane	ND	5.0								
Dichlorodifluoromethane	ND	10								
Ethylbenzene	ND	5.0								
Isopropy benzene	ND	5.0								
Methyl acetate	ND	10								
Methyl tert-butyl ether	ND	5.0								
Methylcyclohexane	ND	10								
Methylene chloride	ND	10								
Styrene	ND	5.0								
Tetrachloroethene	ND	5.0								
Toluene	ND	5.0								

Work Order: 20090352 Project: Oronogo

	OC B	ATCH	I REP	ORT
--	------	-------------	-------	-----

Batch ID: R297438	Instrument ID VMS8		Method:	SW8260C				
trans-1,2-Dichloroethene	ND	5.0						
trans-1,3-Dichloropropene	ND	5.0						
Trichloroethene	ND	5.0						
Trichlorofluoromethane	ND	5.0						
Vinyl chloride	ND	5.0						
Xylenes, Total	ND	5.0						
Surr: 1,2-Dichloroethane-	-d4 20.96	0	20	0	105	83-132	0	
Surr: 4-Bromofluorobenz	ene 20.96	0	20	0	105	83-111	0	
Surr: Dibromofluorometh	ane 20.54	0	20	0	103	77-125	0	
Surr: Toluene-d8	20.21	0	20	0	101	86-108	0	

Work Order: 20090352 Project: Oronogo

Batch ID: R297438 Instrument ID VMS8 Method: SW8260C

LCS Sample ID: VL	CSS1-200904-R29	7438			U	nits: µg/k	(g	Analysis	Date: 9/4	/2020 11:	21 AM
Client ID:	Run ID	: VMS8_	200904A		Sec	No: 6684	4987	Prep Date:		DF: 1	
Analyta	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Analyte	0.0000000000000000000000000000000000000	FUL	SFK Val			70REC			70KPD		Qua
1,1,1-Trichloroethane	20.21	5.0	20		0	101	73-138	0			
1,1,2,2-Tetrachloroethane	17.57	5.0	20		0	87.8	71-126	0			
1,1,2-Trichloroethane	17.79	5.0	20		0	89	77-123	0			
1,1-Dichloroethane	19.55	5.0	20		0	97.8	63-148	0			
1,1-Dichloroethene	21.66	5.0	20		0	108	67-156	0			
1,2,4-Trichlorobenzene	18.6	5.0	20		0	93	70-132	0			
1,2-D bromo-3-chloropropane	16.23	5.0	20		0	81.2	48-127	0			
1,2-D bromoethane	17.96	5.0	20		0	89.8	71-144	0			
1,2-Dichlorobenzene	18	5.0	20		0	90	77-127	0			
1,2-Dichloroethane	19.28	5.0	20		0	96.4	77-127	0			
1,2-Dichloropropane	18.66	5.0	20		0	93.3	74-130	0			
1,3-Dichlorobenzene	18.37	5.0	20		0	91.8	75-133	0			
1,4-Dichlorobenzene	18.37	5.0	20		0	91.8	74-130	0			
2-Butanone	19.07	10	20		0	95.4	55-132	0			
4-Methyl-2-pentanone	26.36	5.0	20		0	132	67-159	0			
Acetone	21.25	10	20		0	106	31-156	0			
Benzene	19.69	5.0	20		0	98.4	77-133	0			
Bromodichloromethane	19	5.0	20		0	95	69-133	0			
Bromoform	17.92	5.0	20		0	89.6	55-126	0			
Bromomethane	24.29	10	20		0	121	31-174	0			
Carbon disulfide	21.42	5.0	20		0	107	45-160	0			
Carbon tetrachloride	19.29	5.0	20		0	96.4	69-140	0			
Chlorobenzene	19.07	5.0	20		0	95.4	76-130	0			
Chloroethane	22.93	5.0	20		0	115	53-150	0			
Chloroform	18.99	5.0	20		0	95	72-132	0			
Chloromethane	17.78	10	20		0	88.9	43-150	0			
cis-1,2-Dichloroethene	21.18	5.0	20		0	106	74-134	0			
cis-1,3-Dichloropropene	19.32	5.0	20		0	96.6	62-134	0			
Dibromochloromethane	16.71	5.0	20		0	83.6	57-118	0			
Dichlorodifluoromethane	21.42	10	20		0	107	43-126	0			
Ethylbenzene	20.45	5.0	20		0	102	75-133	0			
Isopropy benzene	20.55	5.0	20		0	103	74-137	0			
Methyl tert-butyl ether	18.19	5.0	20		0	91	62-136	0			
Methylene chloride	18.95	10	20		0	94.8	55-157	0			
Styrene	23.02	5.0	20		0	115	72-138	0			
Tetrachloroethene	19.54	5.0	20		0	97.7	70-171	0			
Toluene	19.18	5.0	20		0	95.9	76-130	0			
trans-1,2-Dichloroethene	20.77	5.0	20		0	104	65-137	0			
trans-1,3-Dichloropropene	18.46	5.0	20		0	92.3	58-126	0			
Trichloroethene	19.63	5.0	20		0	98.2	75-135	0			
Trichlorofluoromethane	15.89	5.0	20		0	79.4	62-136	0			
Vinyl chloride	20.72	5.0	20		0	104	57-143	0			

Work Order: 20090352 Project: Oronogo

Batch ID: R297438 Instrume	ent ID VMS8		Method:	SW8260C			
Xylenes, Total	61.52	5.0	60	0	103	75-132	0
Surr: 1,2-Dichloroethane-d4	20.93	0	20	0	105	83-132	0
Surr: 4-Bromofluorobenzene	20.43	0	20	0	102	83-111	0
Surr: Dibromofluoromethane	20.87	0	20	0	104	77-125	0
Surr: Toluene-d8	20	0	20	0	100	86-108	0

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20090352 Project: Oronogo

Batch ID: R297438 Instrument ID VMS8 Method: SW8260C

MS Sample ID: 200	82365-04A MS				Units: µ	g/Kg	Analysis Date: 9/4/2020 07:42 PM					
Client ID:	Run ID	: VMS8_	200904A		SeqNo: 6	686689	Prep Date:		DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%RE	Control	RPD Ref Value	%RPD	RPD Limit	Qua		
1,1,1-Trichloroethane	18.81	5.0	20		0 9	4 73-138	3 0	r.				
1,1,2,2-Tetrachloroethane	17.61	5.0	20		0 8	an respective	No.					
1,1,2-Trichloroethane	18.95	5.0	20		0 94.							
1,1-Dichloroethane	19.35	5.0	20		0 96.							
1,1-Dichloroethene	20.85	5.0	20		0 10							
1,2,4-Trichlorobenzene	13.41	5.0	20		0 6	The state of the s				S		
1,2-D bromo-3-chloropropane	14.37	5.0	20		0 71.					9		
1,2-D bromoethane	18.09	5.0	20		0 90.			V1				
1,2-Dichlorobenzene	15.77	5.0	20		0 78.							
1,2-Dichloroethane	20.13	5.0	20		0 10	total transcription	V-0					
	17.63	5.0	20									
1,2-Dichloropropane	15.72	0.25000.77	2.500		Section 1	200 (0.10) (0.00)	60					
1,3-Dichlorobenzene		5.0	20		0 78.							
1,4-Dichlorobenzene	15.72	5.0	20		0 78.	TO THE PARTY OF TH				0		
2-Butanone	38.11	10	20		0 19					S		
4-Methyl-2-pentanone	25.72	5.0	20	2011/05/04/04	0 12	The Market Associate	eo 88					
Acetone	77.24	10	20	12.03						S		
Benzene	18.16	5.0	20		0 90.	980 1773 19389	7.0	20				
Bromodichloromethane	18.47	5.0	20		0 92.							
Bromoform	16.91	5.0	20		0 84.			10				
Bromomethane	17.02	10	20		0 85.							
Carbon disulfide	19.14	5.0	20	0.6084		100 1000)				
Carbon tetrachloride	16.85	5.0	20		0 84.	2 69-140	0					
Chlorobenzene	17.31	5.0	20		0 86.	CON POSICIONE PLAN	TO THE RESERVE OF THE PERSON O	Ų.				
Chloroethane	20.76	5.0	20		0 10	4 53-150	0	0				
Chloroform	19.16	5.0	20		0 95.	8 72-132	2 0	li .				
Chloromethane	16.62	10	20		0 83.	1 43-150	0	Ď.				
cis-1,2-Dichloroethene	20.44	5.0	20		0 10	2 74-134	. 0					
cis-1,3-Dichloropropene	18.12	5.0	20		0 90.	6 62-134	0)				
Dibromochloromethane	15.72	5.0	20		0 78.	6 57-118	3 0	0				
Dichlorodifluoromethane	21.63	10	20	(0 10	8 43-126	6 0					
Ethylbenzene	18.46	5.0	20		0 92.	3 75-133	3 0	Ď.				
Isopropy benzene	17.93	5.0	20		0 89.			1				
Methyl tert-butyl ether	20.44	5.0	20		0 10)				
Methylene chloride	20.98	10	20		0 10							
Styrene	19.28	5.0	20		0 96.							
Tetrachloroethene	19.08	5.0	20		0 95.							
Toluene	17.61	5.0	20		0 8							
trans-1,2-Dichloroethene	19.7	5.0	20		0 98.	TO THE PROPERTY OF THE PARTY OF	100 1915					
trans-1,3-Dichloropropene	16.57	5.0	20		0 82.							
Trichloroethene	17.55	5.0	20		0 87.	NA		70				
Trichlorofluoromethane	16.06	5.0	20		0 80.							
Vinyl chloride	18.98	5.0	20		0 94.			101				

Work Order: 20090352 Project: Oronogo

QC]	BAT	CH]	REP	ORT
------	-----	------	-----	-----

Batch ID: R297438	Instrument ID VMS8		Method:	SW8260C			
Xylenes, Total	55.27	5.0	60	0	92.1	75-132	0
Surr: 1,2-Dichloroethane	-d4 21.59	0	20	0	108	83-132	0
Surr: 4-Bromofluorobenz	ene 20	0	20	0	100	83-111	0
Surr: Dibromofluorometh	ane 21.64	0	20	0	108	77-125	0
Surr: Toluene-d8	19.82	0	20	0	99.1	86-108	0

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20090352 Project: Oronogo

Batch ID: R297438 Instrument ID VMS8 Method: SW8260C

MSD Sample ID: 200	82365-04A MSD				Units: µg/	Kg	Analysis	/2020 07:58 PM		
Client ID:	Run ID	: VMS8_	200904A		SeqNo: 668	86690	Prep Date:		DF: 0.996	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1,1-Trichloroethane	12.75	5.0	19.92		0 64	73-138	18.81	38.4	30	SR
1,1,2,2-Tetrachloroethane	16.08	5.0	19.92		0 80.7	71-126	17.61	9.11	30	Six
1,1,2-Trichloroethane	16.36	5.0	19.92		82.2	77-123		14.6	30	
1,1-Dichloroethane	13.62	5.0	19.92		0 68.3	63-148	19.35	34.8	30	R
1,1-Dichloroethene	13.96	5.0	19.92		70.1	67-156	20.85	39.6	30	R
1,2,4-Trichlorobenzene	11.23	5.0	19.92		56.4	70-132		17.7	30	S
1,2-D bromo-3-chloropropane	14.18	5.0	19.92		71.2	48-127	14.37	1.31	30	
1,2-D bromoethane	15.86	5.0	19.92		79.6	71-144	18.09	13.2	30	
1,2-Dichlorobenzene	13.32	5.0	19.92		0 66.8	77-127	15.77	16.9	30	S
1,2-Dichloroethane	16.46	5.0	19.92		82.7	77-127	20.13	20	30	
1,2-Dichloropropane	13.68	5.0	19.92		0 68.7	74-130	17.63	25.3	30	S
1,3-Dichlorobenzene	12.36	5.0	19.92		0 62.1	75-133		23.9	30	S
1,4-Dichlorobenzene	12.36	5.0	19.92		0 62.1	74-130	0.01.01.01.01.01	23.9	30	S
2-Butanone	34.44	10	19.92		173	55-132		10.1	30	S
4-Methyl-2-pentanone	23.31	5.0	19.92		117	67-159	25.72	9.85	30	
Acetone	64.39	10	19.92	12.03		31-156	77.24	18.1	30	S
Benzene	13.31	5.0	19.92		0 66.8	77-133	1,475,471	30.8	30	SR
Bromodichloromethane	14.2	5.0	19.92		71.3	69-133		26.1	30	
Bromoform	14.11	5.0	19.92		70.8	55-126	16.91	18	30	
Bromomethane	12.4	10	19.92		62.2	31-174	17.02	31.4	30	R
Carbon disulfide	13.09	5.0	19.92	0.6084		45-160	19.14	37.6	30	R
Carbon tetrachloride	11.14	5.0	19.92		55.9	69-140	16.85	40.8	30	SR
Chlorobenzene	13.25	5.0	19.92		0 66.5	76-130	17.31	26.6	30	S
Chloroethane	16.87	5.0	19.92	(84.7	53-150	20.76	20.7	30	
Chloroform	14.29	5.0	19.92	(71.8	72-132	19.16	29.1	30	S
Chloromethane	11.7	10	19.92	(58.8	43-150	16.62	34.7	30	R
cis-1,2-Dichloroethene	14.8	5.0	19.92	(74.3	74-134	20.44	32	30	R
cis-1,3-Dichloropropene	14.01	5.0	19.92	(70.3	62-134	18.12	25.6	30	
Dibromochloromethane	13.19	5.0	19.92	(66.2	57-118	15.72	17.5	30	
Dichlorodifluoromethane	14.42	10	19.92	(72.4	43-126	21.63	40	30	R
Ethylbenzene	13.35	5.0	19.92	(67	75-133	18.46	32.2	30	SR
sopropy benzene	12.63	5.0	19.92		63.4	74-137	17.93	34.7	30	SR
Methyl tert-butyl ether	17.46	5.0	19.92	(87.7	62-136	20.44	15.7	30	
Methylene chloride	15.56	10	19.92		78.1	55-157		29.7	30	
Styrene	14.87	5.0	19.92	(74.7	72-138	19.28	25.8	30	
Tetrachloroethene	13.5	5.0	19.92	Ì	67.8	70-171	19.08	34.3	30	SR
Toluene	12.85	5.0	19.92	(64.5	76-130		31.3	30	SR
rans-1,2-Dichloroethene	13.8	5.0	19.92		69.3	65-137	19.7	35.2	30	R
trans-1,3-Dichloropropene	14.65	5.0	19.92		73.6	58-126		12.3	30	354
Trichloroethene	12.54	5.0	19.92		62.9	75-135		33.3	30	SR
Trichlorofluoromethane	10.57	5.0	19.92	(53.1	62-136		41.3	30	SR
Vinyl chloride	13.36	5.0	19.92		67.1	57-143		34.8	30	R

Work Order: 20090352 Project: Oronogo

QC BATCH REPORT	Γ
-----------------	---

Batch ID: R297438	Instrument	ID VMS8		Method	: SW8260C						
Xylenes, Total		40.02	5.0	59.76	0	67	75-132	55.27	32	30	SR
Surr: 1,2-Dichloroetha	ne-d4	21.49	0	19.92	0	108	83-132	21.59	0.447	30	
Surr: 4-Bromofluorobe	nzene	19.81	0	19.92	0	99.4	83-111	20	0.953	30	
Surr: Dibromofluorome	ethane	21	0	19.92	0	105	77-125	21.64	3.02	30	
Surr: Toluene-d8		19.86	0	19.92	0	99.7	86-108	19.82	0.203	30	

The following samples were analyzed in this batch:

20090352-01A

Work Order: 20090352 Project: Oronogo

MBLK	Sample ID: WBLKS-R2	97546				Unit	s: % of	f sample	Analysis	Date: 9/4/	2020 01:3	3 PM
Client ID:		Run ID	MOIST	_200904C		SeqN	o: 668 8	8085	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%	6REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Moisture		ND	0.10									
LCS	Sample ID: LCS-R2975	46				Unit	s: % of	f sample	Analysis	Date: 9/4/	2020 01:3	3 PM
Client ID:		Run ID	MOIST	_200904C		SeqN	o: 668 8	8084	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%	6REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Moisture		100	0.10	100		0	100	98-102	0			
DUP	Sample ID: 20082115-0	2A DUP				Unit	s: % of	f sample	Analysis	Date: 9/4/	2020 01:3	3 PM
Client ID:		Run ID	MOIST	_200904C		SeqN	o: 668 8	8063	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%	6REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Moisture		19.16	0.10	0		0	0	0-0	19.73	2.93	10	
DUP	Sample ID: 20082115-0	1A DUP				Unit	s: % of	f sample	Analysis	Date: 9/4/	2020 01:3	3 PM
Client ID:		Run ID	MOIST	_200904C		SeqN	o: 668 8	8083	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%	6REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Moisture		10.49	0.10	0		0	0	0-0	10.63	1.33	10	

Cincinnati, OH +1 513 733 5336

Everett, WA +1 425 356 2600 Fort Collins, CO +1 970 490 1511 Holland, Mi +1 616 399 6070

Chain of Custody Form

1	j	_	,
Page	- /	of	/
3-			

+1 281 530 5656 Middletown, PA

Houston, TX

Spring City, PA +1 610 948 4903

South Charleston, WV +1 304 356 3168

COC ID: 222855

Salt Lake City, UT +1 717 944 5541 +1 801 266 7700

York, PA +1 717 505 5280

			Γ		A	LS Project	Manager:	Ī				ALS	Work	Order	#:)	00	90	352
	Customer Information			Projec	ct Informa					Par	amet	er/Me	thod F	Reque	st for	Analy	sis	,-02
Purchase Order		Project l	Name	Ora	1090			A	Volat	iles -	EPA	5	035/	826	<i>o</i>			
Work Order		Project Nu	ımber		0319.00	01		В	semi	volot	ies -			270				
Company Name	Environmental Quality Management, i	Bill To Com	npany		~~~~	Quality Mana	gement. In	С		ماطع -			1801					
Send Report To	adragottu Gegm.com	Invoice	e Attn	Acce	ounts Payab	la:		D		-EPA		808						
Address	1800 Gariton Elivo	Ad	dress	1000) Carillor El	vd		E	Meti	وان - 3 درادع	PA	601	<u>)</u>				**************************************	
City/State/Zip	Cincinnati OH 45240	City/Stat	te/Zip	Cinc	ınnati. OH	45240		G										
Phone	(613) 425-7500	F	Phone	(513	1 925-7500			Н										
Fax	(618) 325-7496	TA PARTICIPATION OF THE PARTIC	Fax	(\$13) 825-7 49 5			ı										
e-Mail Address		e-Mail Ad	dress	***************************************			***************************************	J		***************************************		-,,,,,			***************************************	***************************************		
No.	Sample Description	Date	Ti	me	Matrix	Pres.	# Bottles	A	В	С	D	E	F	G	Н	I	J	Hold
1 Wildwood	01	9/2/2020	// 7/5	-	son)	5,7,8	6	א	Х	Х	×	X	X					
2	·																	
3	state survey and the state of t																	
4							A											
5	***************************************																	
6													+					, , , , , , , , , , , , , , , , , , ,
7				//									.,			ł		
8				***********			***************************************		<u> </u>							·		
9											***		<u> </u>					
10				***************************************		,,,,,,,												
Sampler(s) Please	Print & Sign	Shipm	ent Meth	od	Red	uired Turna	ound Time: (Check	Box)	Part year	manded date	<u>. </u>	į.	R	esults	Due Da	ite:	
Harlan Smith Relinquished by:	Haven hut		JEX			☐ Std 10	NK Days []54	K Days		rer VK Day		24 Hou	r				
Relinquished by: Harlan Sa	0ate: 9/1/2020	ime: 12:60	Receiv	ed by:	60 E	K		Notes	:									
Relinquished by:	Date:	006 ami		ed by La	aboratory): ()(16:::6::4Afff6ffffffffff4Arf-10::111	Co	oler ID	Cool	er Temp	o. QC	Packag			ox Belo	Valuebox	
Logged by (Laborato		1500	Check	ed by (La	iboratory):	\simeq		П	थ	4.	(e `c		∏ Leve ∏ Leve	el II Stol el III Stol el IV SVVI	QURem	i Dele	LI TER LI TER	F Checklist P Level IV
Preservative Key	: 1-HCl 2-HNO ₃ 3-H ₂ SO ₄ 4-Na(OH 5-Na ₂ S ₂	O ₃ 6	NaHSC), 7-Oth	er 8-4°C	9-5035											

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
 The Chain of Custody is a legal document. All information must be completed accurately.

Sample Receipt Checklist

Client Name:	EQM - CINCINNATI			Date/Time	Received:	03-Sep-20	<u> 10:00</u>	
Work Order:	20090352			Received	by:	<u>DS</u>		
Checklist comp Matrices:	leted by <u>Siane Skaw</u> eSignature	03	3-Sep-20 Date	Reviewed by:	Bill Care eSignature	y		04-Sep-20 Date
Carrier name:	<u>FedEx</u>							
Shipping contai	ner/cooler in good condition?		Yes 🔻	No 🗆	Not Pres	sent		
Custody seals i	ntact on shipping container/coole	r?	Yes 💌	No 🗆	Not Pres	sent		
Custody seals i	ntact on sample bottles?		Yes	No 🗆	Not Pres	sent 🗸		
Chain of custoo	ly present?		Yes 🛂	No 🗆				
Chain of custoo	ly signed when relinquished and	received?	Yes 🔽	No 🗆				
Chain of custoo	ly agrees with sample labels?		Yes 🔻	No 🗆				
Samples in pro	per container/bottle?		Yes 💌	No 🗆				
Sample contain	ers intact?		Yes 🛂	No 🗆				
Sufficient samp	le volume for indicated test?		Yes 🔽	No 🗆				
All samples rec	eived within holding time?		Yes 🔽	No 🗆				
Container/Temp	o Blank temperature in complianc	e?	Yes 🔽	No 🗆				
Sample(s) rece Temperature(s)	ived on ice? /Thermometer(s):		Yes ⊻	No 🗆	IR	<u> 1</u>		
Cooler(s)/Kit(s)	:							
	ple(s) sent to storage:			3:06:35 PM	No VOA viol	la aubmittad		
	als have zero headspace?		Yes L	No L	No VOA vial	is submitted	V	
pH adjusted? pH adjusted by:	eptable upon receipt?		Yes L	No No	N/A V			
	•		-					
Login Notes:								
	- — — — — — — — -							
Client Contacte	d:	Date Contacted:		Perso	n Contacted:			
Contacted By:		Regarding:						
Comments:								
CorrectiveActio	n:						SDC I	2000 1 of 1

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

September 14, 2020

Mr. Bill Carey ALS Environmental-Holland 3352 128th Avenue Holland, MI 49424

Certificate of Analysis

Project Name: 2020-HERBICIDES FULL LIST

SOIL - RUSH

Purchase Order: 20-122019869

Workorder: **3126782**

Workorder ID: **AEH077**|20090352

Dear Mr. Carey:

Enclosed are the analytical results for samples received by the laboratory on Wednesday, September 9, 2020.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Ms. Sarah S Leung (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Brandon Frye

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Ms. Sarah S Leung
Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3126782 - 9/14/2020 Page 1 of 11

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3126782 AEH077|20090352

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
3126782001	Wildwood 01	Solid	9/2/2020 11:15	9/9/2020 10:00	Collected by Client

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3126782 - 9/14/2020 Page 2 of 11

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3126782 AEH077|20090352

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All L brary Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97) refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- -- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.

Standard Acronyms/Flags

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Sp ke
- MSD Matrix Sp ke Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- I Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- Result outside of QC limits

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3126782 - 9/14/2020 Page 3 of 11

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3126782 AEH077|20090352

Lab ID: 3126782001 Date Collected: 9/2/2020 11:15 Matrix: Solid

Sample ID: Wildwood 01 Date Received: 9/9/2020 10:00

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
HERBICIDES										
2,4-D	ND		ug/kg	118	SW846 8151A	9/14/20 00:35	S7M	9/14/20 16:44	BS	Α
2,4-DB	ND		ug/kg	118	SW846 8151A	9/14/20 00:35	S7M	9/14/20 16:44	BS	Α
Dalapon	ND		ug/kg	118	SW846 8151A	9/14/20 00:35	S7M	9/14/20 16:44	BS	Α
Dicamba	ND		ug/kg	118	SW846 8151A	9/14/20 00:35	S7M	9/14/20 16:44	BS	Α
Dichloroprop	ND		ug/kg	118	SW846 8151A	9/14/20 00:35	S7M	9/14/20 16:44	BS	Α
Dinoseb	ND		ug/kg	200	SW846 8151A	9/14/20 00:35	S7M	9/14/20 16:44	BS	Α
Pentachlorophenol	ND		ug/kg	118	SW846 8151A	9/14/20 00:35	S7M	9/14/20 16:44	BS	Α
2,4,5-T	ND		ug/kg	200	SW846 8151A	9/14/20 00:35	S7M	9/14/20 16:44	BS	Α
2,4,5-TP	ND		ug/kg	118	SW846 8151A	9/14/20 00:35	S7M	9/14/20 16:44	BS	Α
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4-Dichlorophenylacetic acid (S)	64.6		%	36 - 113	SW846 8151A	9/14/20 00:35	S7M	9/14/20 16:44	BS	А
WET CHEMISTRY										
Moisture	16.0		%	0.1	S2540G-11			9/10/20 13:45	AXD	Α
Total Solids	84.0	1	%	0.1	S2540G-11			9/10/20 13:45	AXD	Α

Ms. Sarah S Leung Project Coordinator

Report ID: 3126782 - 9/14/2020 Page 4 of 11

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3126782 AEH077|20090352

PARAMETER QUALIFIERS

Lab ID # Sample ID Analytical Method Analyte

3126782001 1 Wildwood 01 S2540G-11 Total Solids

Analyte was analyzed past the 7 day holding time.

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3126782 - 9/14/2020 Page 5 of 11

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

Workorder: 3126782 AEH077|20090352

Lab ID	Sample ID	Analysis Method	Prep Method	Leachate Method
3126782001	Wildwood 01	S2540G-11		
3126782001	Wildwood 01	SW846 8151A	SW846 8151A	

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3126782 - 9/14/2020 Page 6 of 11

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3126782 AEH077|20090352

QC Batch: EXTR/61800 Analysis Method: SW846 8151A

QC Batch Method: SW846 8151A Associated Lab Samples: 3126782001

METHOD BLANK: 3197246

WE 11100 DE WW. 0101240			
Parameter	Blank Result	Units	Reporting Limit
2,4-D	ND	ug/kg	100
2,4-DB	ND	ug/kg	100
Dalapon	ND	ug/kg	100
Dicamba	ND	ug/kg	100
Dichloroprop	ND	ug/kg	100
Dinoseb	ND	ug/kg	170
Pentachlorophenol	ND	ug/kg	100
2,4,5-T	ND	ug/kg	170
2,4,5-TP	ND	ug/kg	100
2,4-Dichlorophenylacetic acid (S)	102	%	36 - 113

LABORATORY CONTROL SA	AMPLE: 3197247	,			
Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit
2,4-D	64.9	ug/kg	333	216	23 - 130
2,4-DB	71.7	ug/kg	333	239	10 - 130
Dalapon	37.2	ug/kg	333	124	24 - 65
Dicamba	67	ug/kg	333	223	44 - 89
Dichloroprop	64.7	ug/kg	333	216	36 - 107
Dinoseb	59.1	ug/kg	333	197	25 - 100
Pentachlorophenol	62.8	ug/kg	333	209	43 - 90
2,4,5-T	61.4	ug/kg	333	205	22 - 132
2,4,5-TP	64.3	ug/kg	333	214	49 - 105
2,4-Dichlorophenylacetic acid (S)	69.7	%			36 - 113

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3126782 - 9/14/2020 Page 7 of 11

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3126782 AEH077|20090352

QC Batch: WETC/243837 Analysis Method: S2540G-11

QC Batch Method: S2540G-11

Associated Lab Samples: 3126782001

SAMPLE DUPLICATE: 3196077	ORIGINAL	: 3126781	001			
	Original		DUP		Max	
Parameter	Result	Units	Result	RPD	RPD	
Moisture	37.6967	%	33.1416	12.9*	10	
Total Solids	62 3032	%	66 8583	7 05*	5	

SAMPLE DUPLICATE: 3196	3080 ORIGINAL	RIGINAL: 3126897002								
Parameter	Original Result	Units	DUP Result	RPD	Max RPD					
Moisture	10.7166	%	10.4912	2.13	10					
Total Solids	89.2833	%	89.5087	.25	5					

SAMPLE DUPLICATE: 3196081	ORIGINAL:	3126897	012			
	Original Result		DUP Result	RPD	Max RPD	
Parameter		Units				
Moisture	15.8847	%	16.7016	5.01	10	
Total Solids	84.1152	%	83.2983	.98	5	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3126782 - 9/14/2020 Page 8 of 11

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 3126782 AEH077|20090352

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
3126782001	Wildwood 01			S2540G-11	WETC/243837
3126782001	Wildwood 01	SW846 8151A	FXTR/61800	SW846 8151A	SVGC/58163

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3126782 - 9/14/2020 Page 9 of 11

Subcontractor: AL\$ Environmental

301 Fulling Mill Road

(717) 944-5541

(717) 944-1430

CHAIN-OF-CUSTODY REC

Page 1 of 1

Middletown, PA 17057

Acct #: Environmental

TEL:

FAX:

C	ustomer Information		Project Information				Parameter/Method Request for Analysis									
Purchase Order		Projec	t Name	20090352		A Subcontracted Analyses (SUBCONTRACT)										
Work Order		Projec	t Number			В				74	con a		.000-0010		15.000	
Company Name	ALS Group USA, Corp	Bill To	Company	ALS Group USA, Corp		C						-0300				
Send Report To	Bill Carey	Inv At	tn	Accounts Payable		D		- 10	785 - 5725-5	30 HC05	100000					
Address	3352 128th Ave	Address		3352 128th	Ave	E		2/3			18 18	77.77	(2 N/3 Y	300		
						F		-100						4 655		
City/State/Zip	Holland, Michigan 49424	City/S	tate/Zip	Holland, M	ichigan 49424	G			1-976 8		- 8	\$ - XWX		V.	9	
Phone	(616) 399-6070	Phone	•	(616) 399-6	6070	н	- 11		- 700		3700000	7.7E		- 12	02%	
Fax	(616) 399-6185	Fax		(616) 399-6	5185	11	2000-0		1 15000	V-1000	- 000					
eMail Address	bill.carey@alsglobal.com	eMail	CC			J				0 13/0/86						
ALS Sample ID	Client Sample ID	Matrix	Collection	Date 24hr	Bottle	! A	В	С	D	E	F	G	Н	1	J	
20090352-01B	Wildwood 01	Soil	2/Sep/20	20 11:15	(1) 4OZGNEAT	; X	İ									

Comments: Please analyze	these samples for herbicides (SW8151). Thank you	1.		
	alula issa Elde	· _		
Relinquisted by:	Date/Time Received by:	As 9-9-20 0945	Cooler IDs	Report/QC Level LEVEL IV

301 Fulling Mill Road Middletown, PA 17057 P: (717) 944-5541 F: (717) 944-1430

Condition of Sample Receipt Form

Client: ACS M	Work Order #: 3126782 Initials: Date: W 9-0	120	
1. Were airbills /	tracking numbers present and recorded?	SALD	NO
9.0	** *** *** *** *** *** *** *** *** ***		
A STATE OF THE PARTY OF THE PAR	eals on shipping containers intact?	YES	NO
	eals on sample containers intact?	YES.	NO
	(Chain-of-Custody) present?		NO
Anne per entre and a rest of the second of the second of	nd bottle labels complete, legible and in agreement?		60 3
	COC contain sample locations?		NO
	COC contain date and time of sample collection for all samples?		NO.
CONTRACTOR CONTRACTOR	OC contain sample collectors name?		學
	COC note the type(s) of preservation for all bottles?		(MQ)
	OC note the number of bottles submitted for each sample?		NO
A STATE OF THE STATE OF THE STATE OF THE STATE OF	OC note the type of sample, composite or grab?		(NO)
	COC note the matrix of the sample(s)?		NO
	s samples requiring preservation preserved correctly?"	YES	NO
	es placed in the proper containers for the requested analyses, with sufficient volume?		NO
A. 1	s within holding times for the requested analyses?		(NB
[전시] 전 10 10 10 10 10 10 10 10 10 10 10 10 10	e containers received intact and headspace free when required? (not broken, leaking, frozen, etc.)	0	NO
10. Did we receiv	e trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)?	YES	NO
	ples received on ice?	1 -	NO
	temperatures measured at 0.0-6.0°C		NO .
	les DW matrix ? If YES, fill out Reportable Drinking Water questions below	YES	(NO.
	amples required for SDWA compliance reporting?	YES	NO
	lient provide a SDWA PWS ID#?	YES	NO
13c. Are all ac	ueous unpreserved SDWA samples pH 5-97	YES	NO
13d. Did the d	lient provide the SDWA sample location ID/Description?	YES	NO
13e. Did the o	lient provide the SDWA sample type (D, E, R, C, P, S)?	YES	NO
The Radi	Cooler #: 1 perature (°C): 0 rmometer ID: 294 ological (µCi):		
COMMENTS	(Required for all NO responses above and any sample non-conformance) o cellectur. Nut recid who enough H.T. left for una	: lysis	

¹Final determination of correct preservation for analysis such as volatiles, microbiology, and oil and grease is made in the analytical department at the time of or following the analysis

Rev 1/20/2020

SAMPLE ID	LAB ID	METHOD	CAS NUMBER	ANALYTE	RESULT	UNITS	MDL	RL	Table B-1 Lowest Default Target Levels All Soil Types	THO=0 1	Background USGS Newton County (NGS sample C- 311257) A- horizon	Background USGS Lawrence County (NGS sample C-311261) A-horizon
Wildwood 01	20090352-01	SW8260C - VOC_8260_SLL	78-93-3	2-Butanone	0.024	mg/Kg-dry	0.0094	0.018	7.3	2700		
Wildwood 01	20090352-01	SW846 8270D - SVO_8270_S	91-57-6	2-Methylnaphthalene	0.020	mg/Kg-dry	0.0041	0.008	7.55			
Wildwood 01	20090352-01	SW8260C - VOC_8260_SLL	67-64-1	Acetone	0.15	mg/Kg-dry	0.0085	0.018	4.2			
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7429-90-5	Aluminum	8300	mg/Kg-dry	300	380	76000	7700		
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7440-38-2	Arsenic	5.8	mg/Kg-dry	0.056	0.47	3.9	0.68	7.7	8.9
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7440-39-3	Barium	200	mg/Kg-dry	4.3	4.7	2000	1500		
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7440-41-7	Beryllium	0.81	mg/Kg-dry	0.032	0.19	0.74	16	1.2	1.2
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7440-43-9	Cadmium	3.5	mg/Kg-dry	0.028	0.19	9.3	7.8		
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7440-70-2	Calcium	1900	mg/Kg-dry	23	47	N/A	NS	1700	2600
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7440-47-3	Chromium	16	mg/Kg-dry	0.21	0.47	N/A	NS		
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7440-48-4	Cobalt	11	mg/Kg-dry	0.077	0.47	N/A	2.3	9.3	20.9
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7440-50-8	Copper	10	mg/Kg-dry	0.47	0.47	620	310		
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7439-89-6	Iron	13000	mg/Kg-dry	15	19	N/A	5500	18100	21900
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7439-92-1	Lead	62	mg/Kg-dry	0.23	0.47	3.7	400	27.3	33.6
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7439-95-4	Magnesium	530	mg/Kg-dry	13	19	N/A	NS	1200	1600
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7439-96-5	Manganese	1200	mg/Kg-dry	3.9	4.7	2700	180	697	1390
Wildwood 01	20090352-01	SW7471B - HG_7471_S	7439-97-6	Mercury	0.18	mg/Kg-dry	0.013	0.019	2.2	1.1		
Wildwood 01	20090352-01	SW846 8270D - SVO_8270_S	91-20-3	Naphthalene	0.011	mg/Kg-dry	0.0051	0.008	0.325			
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7440-02-0	Nickel	5.7	mg/Kg-dry	0.24	0.47	500	150		
Wildwood 01	20090352-01	SW846 8270D - SVO_8270_S	85-01-8	Phenanthrene	0.024	mg/Kg-dry	0.0037	0.008	158			
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	9/7/7440	Potassium	530	mg/Kg-dry	7.9	19	N/A	NS	8200	8700
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7782-49-2	Selenium	0.56	mg/Kg-dry	0.43	0.47	6.27			
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7440-62-2	Vanadium	31	mg/Kg-dry	0.12	0.47	530	39		
Wildwood 01	20090352-01	SW6020B - ICP_6020_S	7440-66-6	Zinc	440	mg/Kg-dry	92	94	7200	2300	31	39

Note: Shaded analytes are above the MRBCA LDTL. Lead and Beryllium were above MRBCA LDTL but below EPA RSL. Arsenic above both EPA RSL and MRBCA LDTL, but below background arsenic values for the area.

Schuber Mitchell

07-Nov-2019

Troy Cooper EQM 315 S. Blackcat Rd Joplin, MO 64801

Tel: (417) 392-0532

Fax:

Re: Oronogo - Duenweg Mine Site; PN.: 030319.0001 Work Order: 19101545

Dear Troy,

ALS Environmental received 5 samples on 31-Oct-2019 11:50 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

QC sample results for this data met laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Laboratory Group. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 8.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

R ob Nieman

Electronically approved by: Rob Nieman

Rob Nieman Project Manager

ADDRESS 4388 Glendale Milford Rd Cincinnati, OH 45242- | PHONE (513) 733-5336 | FAX (513) 733-5347

ALS GROUP USA, CORP. Part of the ALS Group An ALS Limited Company

Client: EQM

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001 Work Order Sample Summary

Work Order: 19101545

Lab Samp ID C	Client Sample ID	Matrix	Tag Number	Collection Date	Date Received Hold
19101545-01 0	01	Air		10/23/2019	10/31/2019 11:50
19101545-02 0	02	Air		10/23/2019	10/31/2019 11:50
19101545-03 0	03	Air		10/23/2019	10/31/2019 11:50
19101545-04 0	04	Air		10/23/2019	10/31/2019 11:50
19101545-05 0	05 BLANK	Air		10/23/2019	10/31/2019 11:50

Client: EQM

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001 Case Narrative

Work Order: 19101545

The sample condition upon receipt was acceptable except where noted.

Results relate only to the items tested and are not blank corrected unless indicated.

ALS is an EPA recognized NLLAP laboratory for lead paint, soil, and dust wipe analyses under its AIHA-LAP accreditation.

CN Page 1 of 1

Client: EQM Work Order: 19101545

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001

Analytical Results

Lab ID: 19101545-01A **Collection Date:** 10/23/2019

Client Sample ID: 01 Matrix: AIR

Analyses

METALS BY NIOSH 7300 MOD.		Method: N7300	Air Volume (L): 1920	Analyst: SBD
Date Analyzed: 11/4/2019 14:15		Reporting Limit		
	µg/sample	μg/sample	mg/m3	
Cadmium	ND	0.10	< 0.000052	
Lead	ND	0.20	<0.00010	
Zinc	ND	10	<0.0052	

Lab ID: 19101545-02A **Collection Date:** 10/23/2019

Client Sample ID: 02 Matrix: AIR

Analyses

METALS BY NIOSH 7300 MOD.		Method: N7300	Air Volume (L): 1920	Analyst: SBD
Date Analyzed: 11/4/2019 14:19		Reporting Limit		
	µg/sample	μg/sample	mg/m3	
Cadmium	ND	0.10	<0.00052	
Lead	ND	0.20	<0.00010	
Zinc	ND	10	<0.0052	

Lab ID:19101545-03ACollection Date:10/23/2019Client Sample ID:03Matrix:AIR

Analyses

METALS BY NIOSH 7300 MOD.		Method: N7300	Air Volume (L): 1920	Analyst: SBD
Date Analyzed: 11/4/2019 14:23		Reporting Limit		
	μg/sample	μg/sample	mg/m3	
Cadmium	ND	0.10	<0.00052	
Lead	ND	0.20	<0.00010	
Zinc	ND	10	<0.0052	

Note:

Client: EQM Work Order: 19101545

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001

Analytical Results

Lab ID: 19101545-04A **Collection Date:** 10/23/2019

Client Sample ID: 04 Matrix: AIR

Analyses

METALS BY NIOSH 7300 MOD.		Method: N7300	Air Volume (L): 1920	Analyst: SBD
Date Analyzed: 11/4/2019 14:27		Reporting Limit		
	µg/sample	μg/sample	mg/m3	
Cadmium	ND	0.10	<0.00052	
Lead	ND	0.20	<0.00010	
Zinc	ND	10	<0.0052	

Lab ID: 19101545-05A **Collection Date:** 10/23/2019

Client Sample ID: 05 BLANK Matrix: AIR

Analyses

METALS BY NIOSH 7300 MOD.		Method: N7300	Air Volume (L): 0	Analyst: SBD
Date Analyzed: 11/4/2019 14:31		Reporting Limit		
	μg/sample	μg/sample	mg/m3	
Cadmium	ND	0.10	NA	
Lead	ND	0.20	NA	
Zinc	ND	10	NA	

Note:

Date: 07-Nov-19

QC BATCH REPORT

Client: EQM Work Order: 19101545

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001

Batch ID: 62978 Instrument ID ICP1 Method: N7300

MBLK Client ID:	Sample ID: MBLK-62978-6297		D: ICP1_1!	91104A		nits: µg/sa r qNo: 21318		Analysis Prep Date: 11/	Date: 11/ 4/2019	4/2019 01: DF: 1	59 PM
Analyte	F	esult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cadmium		ND	0.10								
Lead		ND	0.20								
Zinc		ND	10								

LCS Client ID:	Sample ID: LCS-62978-62978 : Run ID: ICP1_191104A				Units: µg/sample SeqNo: 2131862			Analysis Date: 11/4/2019 02:07 PM Prep Date: 11/4/2019 DF: 1			
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cadmium		20.86	0.10	20	0	104	80-120	C)		
Lead	ās	20.82	0.20	20	0	104	80-120	C)	86	
Zinc		19.43	10	20	0	97.1	80-120	C)		

LCSD Client ID:	Sample ID: LCSD-62978-62978 Run ID: ICP1_191104A				Units: µg/sample SeqNo: 2131863			Analysis Date: 11/4/2019 02:11 PM Prep Date: 11/4/2019 DF: 1			
Analyte	Re	esult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cadmium	2	0.38	0.10	20	0	102	80-120	20.86	2.33	20	
Lead	2	0.26	0.20	20	0	101	80-120	20.82	2.73	20	
Zinc	1	9.04	10	20	0	95.2	80-120	19.43	2.03	20	

The following samples were analyzed in this batch:

19101545-	19101545-	19101545-	
01A	02A	03A	
19101545- 04A	19101545- 05A		

Client: EQM

Project: Orange Duanuag Mine Site: PN: 020210 0001

QUALIFIERS,

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001
WorkOrder: 19101545

Oronogo - Duenweg Mine Site; PN.: 030319.0001

ACRONYMS, UNITS

Qualifier	<u>Description</u>
*	Value exceeds Regulatory Limit
a	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
J	Analyte detected below quantitation limit
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
O	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Acronym	Description
Actonym	Description
DUP	Method Duplicate
DUP	Method Duplicate
DUP E	Method Duplicate EPA Method
DUP E LCS	Method Duplicate EPA Method Laboratory Control Sample
DUP E LCS LCSD	Method Duplicate EPA Method Laboratory Control Sample Laboratory Control Sample Duplicate
DUP E LCS LCSD MBLK	Method Duplicate EPA Method Laboratory Control Sample Laboratory Control Sample Duplicate Method Blank
DUP E LCS LCSD MBLK MDL	Method Duplicate EPA Method Laboratory Control Sample Laboratory Control Sample Duplicate Method Blank Method Detection Limit
DUP E LCS LCSD MBLK MDL MQL	Method Duplicate EPA Method Laboratory Control Sample Laboratory Control Sample Duplicate Method Blank Method Detection Limit Method Quantitation Limit
DUP E LCS LCSD MBLK MDL MQL MS	Method Duplicate EPA Method Laboratory Control Sample Laboratory Control Sample Duplicate Method Blank Method Detection Limit Method Quantitation Limit Matrix Spike
DUP E LCS LCSD MBLK MDL MQL MS	Method Duplicate EPA Method Laboratory Control Sample Laboratory Control Sample Duplicate Method Blank Method Detection Limit Method Quantitation Limit Matrix Spike Matrix Spike Duplicate
DUP E LCS LCSD MBLK MDL MQL MS MSD PDS	Method Duplicate EPA Method Laboratory Control Sample Laboratory Control Sample Duplicate Method Blank Method Detection Limit Method Quantitation Limit Matrix Spike Matrix Spike Duplicate Post Digestion Spike
DUP E LCS LCSD MBLK MDL MQL MS MSD PDS PQL	Method Duplicate EPA Method Laboratory Control Sample Laboratory Control Sample Duplicate Method Blank Method Detection Limit Method Quantitation Limit Matrix Spike Matrix Spike Duplicate Post Digestion Spike Practical Quantitaion Limit

 $\mu g/sample$

ALS Environmental

Sample Receipt Checklist

Client Name: <u>EQM-JOPLIN</u>				Date/Time	Date/Time Received: 31-Oct-19			<u>9 11:50</u>			
Work Order: 19	<u>9101545</u>			Received I	by:	<u>SRM</u>					
Checklist complete	ed by Jan Wilcox eSignature	02	-Nov-19	Reviewed by:	R ob Nie	man			05-Nov-19 Date		
Matrices: Carrier name:	<u>FedEx</u>	1			·			l			
Shipping containe	er/cooler in good condition?		Yes 💌	No 🗆	Not Pres	sent 🗌					
Custody seals inta	act on shipping container/coole	r?	Yes	No 🗆	Not Pres	sent 🗸					
Custody seals inta	act on sample bottles?		Yes	No □	Not Pres	sent 🗸					
Chain of custody p	present?		Yes 🔽	No 🗆							
Chain of custody s	signed when relinquished and r	eceived?	Yes 🔽	No 🗆							
Chain of custody a	agrees with sample labels?		Yes 🔻	No 🗆							
Samples in proper	r container/bottle?		Yes 🔽	No 🗌							
Sample containers	s intact?		Yes 🔽	No 🗆							
Sufficient sample	volume for indicated test?		Yes 🔻	No 🗆							
All samples receiv	ved within holding time?		Yes 🔽	No 🗆							
Container/Temp B	Blank temperature in complianc	e?	Yes 🔽	No 🗆							
Temperature(s)/TI	hermometer(s):										
Cooler(s)/Kit(s):											
Water - VOA vials	have zero headspace?		Yes	No 🗆	No VOA vial	s submitted	V				
Water - pH accept	table upon receipt?		Yes	No 🗆							
pH adjusted? pH adjusted by:			Yes _	No 🗌	N/A 🗸						
Login Notes:											
		_ — — — — -									
							· — — -				
Client Contacted:		Date Contacted:		Persoi	n Contacted:						
Contacted By:		Regarding:									
Comments:							7				
CorrectiveAction:											

ALS Environmental
4388 Glendale Milford Rd.
Cincinnati, Ohio 45242

Phone: (800 (513)

(800) 458-1493 or (513) 733-5336 (513) 733-5347

Fax: (513)

Dama	/	- 6	7	

ANALYTICAL REQUEST FORM

REGULAR Status

19101546

CONTACT ALS LABORATORY GROUP PRIOR TO SENDING SAMPLES

REGOLAR Status	19101546	
RUSH Status Required	- ADDITIONAL CHARGE	
RESULTS REQUIRED BY	Y	
	DATE	

34109

Date 10-24-19 Purchase Order N	0. ——			Quote No.
Company Name Enforced		y Mara	general	Sampling Site Drango - Duenung Mine Site
Address 315 5 BLACK C		-		Date/Time of Collection 10-24-19 Shout 7:30 Email
JOPLIN	MO		64801	Project No. 030319.0001
Send Report To Tesy Con	State		Zip	Billing Address (if different)
Email Address treoper		a.m		Eam
		CON		1800 Carillon Blod
Telephone (417) 392-0532 Alt. Contact Name Angyc Alt. Contact Info Adragotta	Dragot			Cincinnati, OH 45240
Lab Use Client Sample Only Number	Media Type		Sample Time (min.)	ANALYSES REQUESTED - Use Method Number if Known
06 86	AIR	2.0494	960 min	Lead, Zinc, Cadmium
67 07	AIR	2.0491		Lead, Zinc, Cadajua
08 \$8	10.50	1000	The state of the s	Lead, Zinc, Cadmium
09 09			225	Lead, Zinc, Cadmium
(0 10 BLANK	AIR			Lead, Zinc, Cadmina
Failure to complete	all porti	ons of this	s form may	delay analysis. Please fill in this form LEGIBLY.
Relinquished by: (Signature)			Date / Time 10/28/19 8:25 AM	(Signature) (0/31/19

Date Time Relinquished by: Date / Time Received by A (Signature) (Signature) Relinquished by: Date / Time Received by: Date / Time (Signature) (Signature) ALS LAB USE ONLY DELIVERY METHOD: CLIENT DROP BOX UPS COOLER TEMP: STD MAIL PRTY MAIL COURIER ALS Taken with IR#: NOT REQUIRED CUSTODY SEALS: SAMPLES COOLER PACKAGE COOLING METHOD: NONE COOLER DRY ICE ICE PACK WET ICE EQUIP. RETURNED:

07-Nov-2019

Troy Cooper EQM 315 S. Blackcat Rd Joplin, MO 64801

Tel: (417) 392-0532

Fax:

Re: Oronogo - Duenweg Mine Site; PN.: 030319.0001 Work Order: 19101546

Dear Troy,

ALS Environmental received 5 samples on 31-Oct-2019 11:50 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

QC sample results for this data met laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Laboratory Group. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 8.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

R ob Nieman

Electronically approved by: Rob Nieman

Rob Nieman Project Manager

ADDRESS 4388 Glendale Milford Rd Cincinnati, OH 45242- | PHONE (513) 733-5336 | FAX (513) 733-5347

ALS GROUP USA, CORP. Part of the ALS Group An ALS Limited Company

Client: EQM

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001 Work Order Sample Summary

Work Order: 19101546

Lab Samp ID	Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
19101546-01	06	Air		10/24/2019	11/2/2019	
19101546-02	07	Air		10/24/2019	11/2/2019	
19101546-03	08	Air		10/24/2019	11/2/2019	
19101546-04	09	Air		10/24/2019	11/2/2019	
19101546-05	10 BLANK	Air		10/24/2019	11/2/2019	

Client: EQM

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001 Case Narrative

Work Order: 19101546

The sample condition upon receipt was acceptable except where noted.

Results relate only to the items tested and are not blank corrected unless indicated.

ALS is an EPA recognized NLLAP laboratory for lead paint, soil, and dust wipe analyses under its AIHA-LAP accreditation.

CN Page 1 of 1

Client: EQM Work Order: 19101546

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001

Analytical Results

Lab ID: 19101546-01A **Collection Date:** 10/24/2019

Client Sample ID: 06 Matrix: AIR

Analyses

METALS BY NIOSH 7300 MOD.		Method: N7300	Air Volume (L): 1920	Analyst: SBD
Date Analyzed: 11/4/2019 14:43		Reporting Limit		
	µg/sample	μg/sample	mg/m3	
Cadmium	ND	0.10	< 0.000052	
Lead	ND	0.20	<0.00010	
Zinc	ND	10	<0.0052	

Lab ID: 19101546-02A **Collection Date:** 10/24/2019

Client Sample ID: 07 Matrix: AIR

Analyses

METALS BY NIOSH 7300 MOD.		Method: N7300	Air Volume (L): 1920	Analyst: SBD
Date Analyzed: 11/4/2019 14:47		Reporting Limit		
	μg/sample	μg/sample	mg/m3	
Cadmium	ND	0.10	<0.00052	
Lead	ND	0.20	<0.00010	
Zinc	ND	10	<0.0052	

Lab ID: 19101546-03A **Collection Date:** 10/24/2019

Client Sample ID: 08 Matrix: AIR

Analyses

METALS BY NIOSH 7300 MOD.		Method: N7300	Air Volume (L): 1920	Analyst: SBD
Date Analyzed: 11/4/2019 14:51		Reporting Limit		
	μg/sample	μg/sample	mg/m3	
Cadmium	ND	0.10	<0.000052	
Lead	ND	0.20	<0.00010	
Zinc	ND	10	<0.0052	

Note:

Client: EQM Work Order: 19101546

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001

Analytical Results

Lab ID: 19101546-04A **Collection Date:** 10/24/2019

Client Sample ID: 09 Matrix: AIR

Analyses

METALS BY NIOSH 7300 MOD.		Method: N7300	Air Volume (L): 1920	Analyst: SBD
Date Analyzed: 11/4/2019 14:55		Reporting Limit		
	µg/sample	μg/sample	mg/m3	
Cadmium	ND	0.10	<0.000052	
Lead	ND	0.20	<0.00010	
Zinc	ND	10	<0.0052	

Lab ID: 19101546-05A **Collection Date:** 10/24/2019

Client Sample ID: 10 BLANK Matrix: AIR

Analyses

METALS BY NIOSH 7300 MOD.		Method: N7300	Air Volume (L): 0	Analyst: SBD
Date Analyzed: 11/4/2019 14:59	µg/sample	Reporting Limit µg/sample	mg/m3	
Cadmium	ND	0.10	NA	
Lead	ND	0.20	NA	
Zinc	ND	10	NA	

Note:

Date: 07-Nov-19

QC BATCH REPORT

Client: EQM Work Order: 19101546

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001

Batch ID: 62978 Instrument ID ICP1 Method: N7300

MBLK	Sample ID: MBLK-62978-62978				U	nits: µg/saı	mple	Analysis Date: 11/4/2019 01:59 PM				
Client ID:		Run ID: ICP1_191104A			Sec	SeqNo: 2131860			Prep Date: 11/4/2019		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Cadmium		ND	0.10									
Lead		ND	0.20									
Zinc		ND	10									

LCS Client ID:	Sample ID: LCS-62978-6297	lle ID: LCS-62978-62978 Run ID: ICP1_191104A				nits: µg/sai No: 21318	ON THE STATE OF TH	Analysis Date: 11/4/2019 02:07 PM Prep Date: 11/4/2019 DF: 1			07 PM
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cadmium		20.86	0.10	20	0	104	80-120	()		
Lead	ille:	20.82	0.20	20	0	104	80-120	()	50	
Zinc		19.43	10	20	0	97.1	80-120	()		

LCSD Client ID:	Sample ID: LCSD-62978-62978 Run ID: ICP1_191104A					Units: µg/sample SeqNo: 2131863			Analysis Date: 11/4/2019 02:11 PM Prep Date: 11/4/2019 DF: 1		
Analyte	R	esult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cadmium	2	0.38	0.10	20	0	102	80-120	20.86	2.33	20	
Lead	2	0.26	0.20	20	0	101	80-120	20.82	2.73	20	
Zinc	1	9.04	10	20	0	95.2	80-120	19.43	2.03	20	

The following samples were analyzed in this batch:

19101546-	19101546-	19101546-	
01A	02A	03A	
19101546- 04A	19101546- 05A		

Client: EQM

Project: Orange Duanuag Mine Site: PN: 020210 0001

QUALIFIERS,

Project: Oronogo - Duenweg Mine Site; PN.: 030319.0001
WorkOrder: 19101546

Oronogo - Duenweg Mine Site; PN.: 030319.0001

ACRONYMS, UNITS

WorkOrder:	19101546
Qualifier	<u>Description</u>
*	Value exceeds Regulatory Limit
a	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
J	Analyte detected below quantitation limit
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
O	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Acronym	Description
DUP	Method Duplicate
E	EPA Method
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MBLK	Method Blank
MDL	Method Detection Limit
MQL	Method Quantitation Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PDS	Post Digestion Spike
PQL	Practical Quantitaion Limit
SDL	Sample Detection Limit
SW	SW-846 Method
Units Reported	Description

 $\mu g/sample$

ALS Environmental

Sample Receipt Checklist

Client Name: <u>EQM-JOPLIN</u>			Date/Time	Received: 3'	1-Oct-19	<u>11:50</u>	
Work Order: <u>19101546</u>			Received b	Received by: SRM			
Checklist completed by J an Wilcox		02-Nov-19	Reviewed by:	R ob Niema	n		05-Nov-19
eSignature		Date		eSignature			Date
Matrices: Carrier name: FedEx							
Shipping container/cooler in good condition?		Yes 🕨	No 🗆	Not Present	: 🗆		
Custody seals intact on shipping container/coole	er?	Yes	No 🗌	Not Present			
Custody seals intact on sample bottles?		Yes	No □	Not Present			
Chain of custody present?		Yes 🕨	No 🗌				
Chain of custody signed when relinquished and	received?	Yes 🕨	No 🗌				
Chain of custody agrees with sample labels?		Yes 🕨	No 🗆				
Samples in proper container/bottle?		Yes 🕨	No 🗌				
Sample containers intact?		Yes 🕨	No 🗆				
Sufficient sample volume for indicated test?		Yes 🕨	No 🗆				
All samples received within holding time?		Yes 🕨	No 🗌				
Container/Temp Blank temperature in compliance	ce?	Yes 🕨	No 🗌				
Temperature(s)/Thermometer(s):							
Cooler(s)/Kit(s):							
Water - VOA vials have zero headspace?		Yes	No 🗆	No VOA vials su	ubmitted	✓	
Water - pH acceptable upon receipt?		Yes	□ No □	N/A ✓			
pH adjusted? pH adjusted by:		Yes _	No 🗆	N/A 🗸			
Login Notes:							
				_ — — — — —			
Client Contacted:	Date Contacted:		Persor	Contacted:			
Contacted By:	Regarding:						
Comments:							
CorrectiveAction:							
						000	5 4 6 4

ALS

ALS Environmental
4388 Glendale Milford Rd.
Cincinnati, Ohio 45242

e: (800) 458-1493 or (513) 733-5336

Fax: (513) 733-5347

Page __/__ of __/_

ANALYTICAL REQUEST FORM

RUSH Status Required - ADDITIONAL CHARGE

CONTACT ALS LABORATORY GROUP PRIOR TO SENDING SAMPLES

REGULAR Status

RESULTS REQUIRED BY

19101545

0 4	A	0	
- /			34
24		U	u

Date 10-23-19 Purchase Order No. Company Name Environmental Quality Managerum Address 315 5 BLACK CAT RO JOPLIN MO 6-1801 City State Zip Send Report To Troy Cooper Email Address Trooper @ eqm.com Telephone (417) 392-0532 Alt. Contact Name Angye Dragotta						Quote No. Sampling Site Dronogo - Duenung Mine Site Date/Time of Collection 10-23-19, 40-24-19, 54-14 Project No. 030319.0001 Billing Address (if different) Eam 1800 Carillon Blvd. Cincinnati OH 45240				
Lab Use Only	client Sample Number	Media Type	Sample Volume (L)	Sample Time (min.		ANALYSE	S REQUE	STED - Use M	lethod Number	if Known
)\	ØI	AIR	2.OLPW			Lead i	Zînr	Cadminm		
52	02	AIR	2.0 LM	100				Carlaine	L	
03	03		2.0LPM	1 1 1 2 1				Cadmina		
04	04	AIR	2.0 LPM	940 4				Cadmina		
05	\$5 BLANK	AIR				Lead	Zine,	Cadmin	M.	
Relinquis	Failure to complet	e all portio	ns of this			lelay ana	- A	ease fill in th	nis form LEG	Date / Time
(Signatur Relinquis (Signatur	e) S Lagu			Date / Date /	sam	(Signature) Received by: (Signature)	GU	longor	ley	[0[3] [9] 1[50] Date / Time
Relinquis (Signatur				Date /	Time	Received by: (Signature)				Date / Time
	ALS LAB USE OF	ILY		D	DELIVERY	METHOD:	CLIENT	DROP BOX	FEDEX	UPS
COOLER TEMP: °C Taken with IRII:					STD MAIL PRTY MAIL ALS COURIER OTHER: CUSTODY SEALS: COOLER PACKAGE SAMPLES OT RECOVERED					
COOLING	METHOD: SONE COOLER	WETICE DRY I	CE ICE PACK		EQUIP. RE	National Control of the Control of t				

Ray Schmidt

30-Aug-2020

Angye Dragotta
Environmental Quality Management, Inc.
1800 Carillon Blvd
Cincinnati, OH 45240

Re: Oronogo Work Order: 20081732

Dear Angye,

ALS Environmental received 1 sample on 21-Aug-2020 09:30 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 54.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely.

Electronically approved by: Bill Carey

Bill Carey

Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 🎘

ALS Group, USA Date: 30-Aug-20

Client: Environmental Quality Management, Inc.

Project: Oronogo **Work Order Sample Summary**

Work Order: 20081732

Tag Number **Lab Samp ID** Client Sample ID **Matrix Collection Date Date Received Hold** Soil

20081732-01 Ray 01

8/20/2020 08:50 8/21/2020 09:30

ALS Group, USA

Client: Environmental Quality Management, Inc.

QUALIFIERS,

Project: Oronogo
WorkOrder: 20081732

Oronogo
ACRONYMS, UNITS

QF Page 1 of 2

Date: 30-Aug-20

Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
O	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
E	EPA
SW	SW-846 Update III
Units Reported	Description
% of sample	Percent of Sample
μg/Kg	Micrograms per Kilogram
as noted mg/Kg-dry	Milligrams per Kilogram Dry Weight
2 8 3	

Date: 30-Aug-20

ALS Group, USA

and temperature compliance.

Client: Environmental Quality Management, Inc.

Project: Oronogo
Work Order: 20081732

Case Narrative

Samples for the above noted Work Order were received on 8/21/2020. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation,

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Volatile Organics:

Batch R296689, Method VOC_8260_SLL, Sample 20081732-01A MS: The MS recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: See QC report

Batch R296689, Method VOC_8260_SLL, Sample 20081732-01A MS: The MS recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Acetone

Batch R296689, Method VOC_8260_SLL, Sample 20081732-01A MSD: The MSD recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: See QC report

Batch R296689, Method VOC_8260_SLL, Sample 20081732-01A MSD: The MSD recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Acetone

Batch R296689, Method VOC_8260_SLL, Sample 20081732-01A MSD: The RPD between the MS and MSD was outside the control limit. The corresponding result in the parent sample should be considered estimated for this analyte: See QC report

Extractable Organics:

No other deviations or anomalies were noted.

Client: Environmental Quality Management, Inc.

Project: Oronogo Case Narrative

Work Order: 20081732

Metals:

Batch 163020, Method ICP_6020_S, Sample 20081732-01CMS: The MS recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Mn, Zn

Batch 163020, Method ICP_6020_S, Sample 20081732-01CMS: The MS recovery was above the upper control limit. The corresponding result in the parent sample may be biased high for this analyte: K

Batch 163020, Method ICP_6020_S, Sample 20081732-01CMS: The MS recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: Sb

Batch 163020, Method ICP_6020_S, Sample 20081732-01CMS: The MS recovery was outside of the control limit. However, the MSD recovery and the RPD between the MS and MSD was in control. No qualification is required for this analyte: V

Batch 163020, Method ICP_6020_S, Sample 20081732-01CMS: The MS recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Ba, Pb

Batch 163020, Method ICP_6020_S, Sample 20081732-01CMS: The MS recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Al

Batch 163020, Method ICP_6020_S, Sample 20081732-01CMSD: The MSD recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Mn, Zn

Batch 163020, Method ICP_6020_S, Sample 20081732-01CMSD: The MSD recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Ba, Pb

Batch 163020, Method ICP_6020_S, Sample 20081732-01CMSD: The MSD recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: Sb

Batch 163020, Method ICP_6020_S, Sample 20081732-01CMSD: The MSD recovery was above the upper control limit. The corresponding result in the parent sample may be biased high for this analyte: K

Batch 163020, Method ICP_6020_S, Sample 20081732-01CMSD: The MSD recovery was

Client: Environmental Quality Management, Inc.

Project: Oronogo Case Narrative

Work Order: 20081732

outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Al

Batch 163025, Method HG_7471_S, Sample 20081732-01CMS: The MS recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: Hg

Batch 163025, Method HG_7471_S, Sample 20081732-01CMSD: The MSD recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: Hg

Wet Chemistry:

No other deviations or anomalies were noted.

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20081732

 Sample ID:
 Ray 01
 Lab ID:
 20081732-01

Date: 30-Aug-20

Collection Date: 8/20/2020 08:50 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilutio Facto		Date Analyzed
PCBS			SW808	2	Prep: SW354	16 8/24/20 14:29	Analyst: RM
Aroclor 1016	ND		0.071	mg/Kg-	dry	1	8/24/2020 08:59 PM
Aroclor 1221	ND		0.071	mg/Kg-	dry	1	8/24/2020 08:59 PM
Aroclor 1232	ND		0.071	mg/Kg-	dry	1	8/24/2020 08:59 PM
Aroclor 1242	ND		0.071	mg/Kg-	dry	1	8/24/2020 08:59 PM
Aroclor 1248	ND		0.071	mg/Kg-	dry	1	8/24/2020 08:59 PM
Aroclor 1254	ND		0.071	mg/Kg-	dry	1	8/24/2020 08:59 PM
Aroclor 1260	ND		0.071	mg/Kg-	dry	1	8/24/2020 08:59 PM
Surr: Decachlorobiphenyl	65.1		40-140	%REC		1	8/24/2020 08:59 PM
Surr: Tetrachloro-m-xylene	74.7		45-124	%REC		1	8/24/2020 08:59 PM
PESTICIDES			SW808	1 A	Prep: SW354	16 8/24/20 14:35	Analyst: RM
4,4´-DDD	ND		0.011	mg/Kg-	dry	1	8/25/2020 03:56 PM
4,4´-DDE	ND		0.011	mg/Kg-	dry	1	8/25/2020 03:56 PM
4,4'-DDT	ND		0.011	mg/Kg-	dry	1	8/25/2020 03:56 PM
Aldrin	ND		0.011	mg/Kg-	dry	1	8/25/2020 03:56 PM
alpha-BHC	ND		0.011	mg/Kg-	-	1	8/25/2020 03:56 PM
alpha-Chlordane	ND		0.011	mg/Kg-	dry	1	8/25/2020 03:56 PM
beta-BHC	ND		0.011	mg/Kg-	-	1	8/25/2020 03:56 PM
Chlordane, Technical	ND		0.027	mg/Kg-	dry	1	8/25/2020 03:56 PM
delta-BHC	ND		0.011	mg/Kg-	-	1	8/25/2020 03:56 PM
Dieldrin	ND		0.011	mg/Kg-	dry	1	8/25/2020 03:56 PM
Endosulfan I	ND		0.011	mg/Kg-	dry	1	8/25/2020 03:56 PM
Endosulfan II	ND		0.011	mg/Kg-	-	1	8/25/2020 03:56 PM
Endosulfan sulfate	ND		0.011	mg/Kg-	-	1	8/25/2020 03:56 PM
Endrin	ND		0.011	mg/Kg-	dry	1	8/25/2020 03:56 PM
Endrin aldehyde	ND		0.011	mg/Kg-	dry	1	8/25/2020 03:56 PM
Endrin ketone	ND		0.011	mg/Kg-	-	1	8/25/2020 03:56 PM
gamma-BHC (Lindane)	ND		0.011	mg/Kg-	-	1	8/25/2020 03:56 PM
gamma-Chlordane	ND		0.011	mg/Kg-	-	1	8/25/2020 03:56 PM
Heptachlor	ND		0.011	mg/Kg-	-	1	8/25/2020 03:56 PM
Heptachlor epoxide	ND		0.011	mg/Kg-	dry	1	8/25/2020 03:56 PM
Methoxychlor	ND		0.011	mg/Kg-	-	1	8/25/2020 03:56 PM
Toxaphene	ND		0.064	mg/Kg-	•	1	8/25/2020 03:56 PM
Surr: Decachlorobiphenyl	54.8		50-150	%REC	•	1	8/25/2020 03:56 PM
Surr: Tetrachloro-m-xylene	62.4		50-150	%REC		1	8/25/2020 03:56 PM
MERCURY BY CVAA			SW747	1B	Prep: SW747	71 8/24/20 10:35	Analyst: MAC
Mercury	0.47		0.035	mg/Kg-	-dry	2	8/24/2020 01:19 PM
METALS BY ICP-MS			SW602	0B	Prep: SW305	50B 8/24/20 08:16	Analyst: STP

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20081732

 Sample ID:
 Ray 01
 Lab ID:
 20081732-01

Date: 30-Aug-20

Collection Date: 8/20/2020 08:50 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Aluminum	4,700		360	mg/Kg-dry	100	8/25/2020 01:45 PM
Antimony	0.62		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Arsenic	2.5		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Barium	140		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Beryllium	0.58		0.18	mg/Kg-dry	1	8/24/2020 07:09 PM
Cadmium	3.6		0.18	mg/Kg-dry	1	8/24/2020 07:09 PM
Calcium	1,700		45	mg/Kg-dry	1	8/24/2020 07:09 PM
Chromium	8.6		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Cobalt	6.4		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Copper	10		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Iron	6,500		18	mg/Kg-dry	1	8/24/2020 07:09 PM
Lead	87		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Magnesium	490		18	mg/Kg-dry	1	8/24/2020 07:09 PM
Manganese	720		4.5	mg/Kg-dry	10	8/25/2020 01:55 PM
Nickel	6.2		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Potassium	470		18	mg/Kg-dry	1	8/24/2020 07:09 PM
Selenium	ND		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Silver	0.77		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Sodium	ND		27	mg/Kg-dry	1	8/24/2020 07:09 PM
Thallium	ND		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Vanadium	15		0.45	mg/Kg-dry	1	8/24/2020 07:09 PM
Zinc	510		8.9	mg/Kg-dry	10	8/25/2020 01:55 PM
SEMI-VOLATILE ORGANIC COMPOUNDS			SW846	8270D Pre	p: SW3546 8/24/20 17:02	Analyst: EEW
1,1`-Biphenyl	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
2,4,5-Trichlorophenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
2,4,6-Trichlorophenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
2,4-Dichlorophenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
2,4-Dimethylphenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
2,4-Dinitrophenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
2,4-Dinitrotoluene	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
2,6-Dinitrotoluene	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
2-Chloronaphthalene	ND		0.0073	mg/Kg-dry	1	8/25/2020 05:04 AM
2-Chlorophenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
2-Methylnaphthalene	ND		0.0073	mg/Kg-dry	1	8/25/2020 05:04 AM
2-Methylphenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
2-Nitroaniline	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
2-Nitrophenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
3&4-Methylphenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
3,3'-Dichlorobenzidine	ND		0.18	mg/Kg-dry	1	8/25/2020 05:04 AM
3-Nitroaniline	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20081732

 Sample ID:
 Ray 01
 Lab ID:
 20081732-01

Date: 30-Aug-20

Collection Date: 8/20/2020 08:50 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
4,6-Dinitro-2-methylphenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
4-Bromophenyl phenyl ether	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
4-Chloro-3-methylphenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
4-Chloroaniline	ND		0.073	mg/Kg-dry	1	8/25/2020 05:04 AM
4-Chlorophenyl phenyl ether	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
4-Nitroaniline	ND		0.18	mg/Kg-dry	1	8/25/2020 05:04 AM
4-Nitrophenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
Acenaphthene	ND		0.0073	mg/Kg-dry	1	8/25/2020 05:04 AM
Acenaphthylene	ND		0.0073	mg/Kg-dry	1	8/25/2020 05:04 AM
Acetophenone	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
Anthracene	ND		0.0073	mg/Kg-dry	1	8/25/2020 05:04 AM
Atrazine	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
Benzaldehyde	ND		0.073	mg/Kg-dry	1	8/25/2020 05:04 AM
Benzo(a)anthracene	0.015		0.0073	mg/Kg-dry		8/25/2020 05:04 AM
Benzo(a)pyrene	0.019		0.0073	mg/Kg-dry		8/25/2020 05:04 AM
Benzo(b)fluoranthene	0.033		0.0073	mg/Kg-dry		8/25/2020 05:04 AM
Benzo(g,h,i)perylene	0.010		0.0073	mg/Kg-dry		8/25/2020 05:04 AM
Benzo(k)fluoranthene	0.011		0.0073	mg/Kg-dry		8/25/2020 05:04 AM
Bis(2-chloroethoxy)methane	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
Bis(2-chloroethyl)ether	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
Bis(2-chloroisopropyl)ether	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
Bis(2-ethylhexyl)phthalate	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Butyl benzyl phthalate	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Caprolactam	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Carbazole	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Chrysene	0.010		0.0073	mg/Kg-dry		8/25/2020 05:04 AM
D benzo(a,h)anthracene	ND		0.0073	mg/Kg-dry		8/25/2020 05:04 AM
D benzofuran	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Diethyl phthalate	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Dimethyl phthalate	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Di-n-butyl phthalate	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Di-n-octyl phthalate	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Fluoranthene	0.013		0.0073	mg/Kg-dry		8/25/2020 05:04 AM
Fluorene	ND		0.0073	mg/Kg-dry		8/25/2020 05:04 AM
Hexachlorobenzene	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Hexachlorobutadiene	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Hexachlorocyclopentadiene	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Hexachloroethane	ND		0.036	mg/Kg-dry		8/25/2020 05:04 AM
Indeno(1,2,3-cd)pyrene	0.016		0.0073	mg/Kg-dry		8/25/2020 05:04 AM
Isophorone	ND		0.18	mg/Kg-dry		8/25/2020 05:04 AM

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20081732

 Sample ID:
 Ray 01
 Lab ID:
 20081732-01

Date: 30-Aug-20

Collection Date: 8/20/2020 08:50 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Naphthalene	ND		0.0073	mg/Kg-dry	1	8/25/2020 05:04 AM
Nitrobenzene	ND		0.18	mg/Kg-dry	1	8/25/2020 05:04 AM
N-Nitrosodi-n-propylamine	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
N-Nitrosodiphenylamine	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
Pentachlorophenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
Phenanthrene	ND		0.0073	mg/Kg-dry	1	8/25/2020 05:04 AM
Phenol	ND		0.036	mg/Kg-dry	1	8/25/2020 05:04 AM
Pyrene	0.011		0.0073	mg/Kg-dr	y 1	8/25/2020 05:04 AM
Surr: 2,4,6-Tribromophenol	81.1		38-92	%REC	1	8/25/2020 05:04 AM
Surr: 2-Fluorobiphenyl	84.0		44-107	%REC	1	8/25/2020 05:04 AM
Surr: 2-Fluorophenol	72.8		37-109	%REC	1	8/25/2020 05:04 AM
Surr: 4-Terphenyl-d14	86.6		52-123	%REC	1	8/25/2020 05:04 AM
Surr: Nitrobenzene-d5	77.9		41-94	%REC	1	8/25/2020 05:04 AM
Surr: Phenol-d6	77.5		28-111	%REC	1	8/25/2020 05:04 AM
VOLATILE ORGANIC COMPOUNDS			SW826	OC Pre	ep: SW5035 8/21/20 10:51	Analyst: MF
Acetone	ND		280	μg/Kg	1	8/22/2020 01:41 AM
Surr: 1,2-Dichloroethane-d4	102		70-130	%REC	1	8/22/2020 01:41 AM
Surr: 4-Bromofluorobenzene	102		70-130	%REC	1	8/22/2020 01:41 AM
Surr: Dibromofluoromethane	94.8		70-130	%REC	1	8/22/2020 01:41 AM
Surr: Toluene-d8	99.7		70-130	%REC	1	8/22/2020 01:41 AM
VOLATILE ORGANIC COMPOUNDS - I	OW LEVEL		SW826	0C		Analyst: MF
1,1,1-Trichloroethane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,1,2,2-Tetrachloroethane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,1,2-Trichloroethane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,1,2-Trichlorotrifluoroethane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,1-Dichloroethane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,1-Dichloroethene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,2,4-Trichlorobenzene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,2-Dibromo-3-chloropropane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,2-Dibromoethane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,2-Dichlorobenzene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,2-Dichloroethane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,2-Dichloropropane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,3-Dichlorobenzene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
1,4-Dichlorobenzene	ND		0.0065	mg/Kg-dry		8/25/2020 02:28 PM
2-Butanone	0.023		0.013	mg/Kg-dr		8/25/2020 02:28 PM
2-Methylnaphthalene	ND		0.0065	mg/Kg-dry		8/25/2020 02:28 PM
4-Methyl-2-pentanone	ND		0.0065	mg/Kg-dry		8/25/2020 02:28 PM
Benzene	ND		0.0065	mg/Kg-dry		8/25/2020 02:28 PM

Client: Environmental Quality Management, Inc.

 Project:
 Oronogo
 Work Order:
 20081732

 Sample ID:
 Ray 01
 Lab ID:
 20081732-01

Date: 30-Aug-20

Collection Date: 8/20/2020 08:50 AM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Bromoform	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Bromomethane	ND		0.013	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Carbon disulfide	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Carbon tetrachloride	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Chlorobenzene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Chloroethane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Chloroform	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Chloromethane	ND		0.013	mg/Kg-dry	1.168	8/25/2020 02:28 PM
cis-1,2-Dichloroethene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
cis-1,3-Dichloropropene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Cyclohexane	ND		0.013	mg/Kg-dry	1.168	8/25/2020 02:28 PM
D bromochloromethane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Dichlorodifluoromethane	ND		0.013	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Ethylbenzene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Isopropylbenzene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Methyl acetate	ND		0.013	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Methyl tert-butyl ether	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Methylcyclohexane	ND		0.013	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Methylene chloride	ND		0.013	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Styrene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Tetrachloroethene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Toluene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
trans-1,2-Dichloroethene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
trans-1,3-Dichloropropene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Trichloroethene	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Trichlorofluoromethane	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Vinyl chloride	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Xylenes, Total	ND		0.0065	mg/Kg-dry	1.168	8/25/2020 02:28 PM
Surr: 1,2-Dichloroethane-d4	116		83-132	%REC	1.168	8/25/2020 02:28 PM
Surr: 4-Bromofluorobenzene	104		83-111	%REC	1.168	8/25/2020 02:28 PM
Surr: Dibromofluoromethane	106		77-125	%REC	1.168	8/25/2020 02:28 PM
Surr: Toluene-d8	95.9		86-108	%REC	1.168	8/25/2020 02:28 PM
MOISTURE			SW355	0C		Analyst: KTP
Moisture	9.7		0.10	% of samp	ole 1	8/24/2020 10:15 AM
SUBCONTRACTED ANALYSES			SUBC	ONTRACT		Analyst: ALS
Subcontracted Analyses	See report			as noted	1	8/30/2020

QC BATCH REPORT

Date: 30-Aug-20

Work Order: 20081732 Project: Oronogo

Batch ID: 163030	Instrument ID G	C14		Metho	d: SW808	12					
MBLK	Sample ID: PBLKS1-	163030-163	030			Units: µg/l	(g	Analys	sis Date: 8/2	4/2020 03	:38 PM
Client ID:		Run ID	CC14_2	200824A		SeqNo: 6658	8680	Prep Date: 8/2	DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aroclor 1016		ND	67								
Aroclor 1221		ND	67								
Aroclor 1232		ND	67								
Aroclor 1242		ND	67								
Aroclor 1248		ND	67								
Aroclor 1254		ND	67								
Aroclor 1260		ND	67								
Surr: Decachlorol	biphenyl	35.8	0	33.3		0 108	40-140		0		
Surr: Tetrachloro-	-m-xylene	36.1	0	33.3		0 108	45-124	9	0		

LCS Sar	mple ID: PLCSS1-16	3030-163	030			-	Units: µg/K	g	Analysis Date: 8/24/2020 03:53 PM					
Client ID:		Run IE): GC14_2	200824A		Se	eqNo: 6658	8681	Prep Date: 8/2	4/2020	DF: 1			
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
Aroclor 1016		758.8	67	833		0	91.1	50-130		0				
Aroclor 1260		768.3	67	833		0	92.2	50-130	1	0				
Surr: Decachlorobipher	nyl	34.43	0	33.3		0	103	40-140		0				
Surr: Tetrachloro-m-xyl	ene	32.78	0	33.3		0	98.4	45-124		0				

MS Sa	Sample ID: 20081688-01B MS							(g	Analysis Date: 8/24/2020 04:09 PM					
Client ID:		Run IE	GC14_2	200824A		SeqNo: 6658682			Prep Date: 8/2	4/2020	DF: 1			
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
Aroclor 1016		766.4	66	828.3		0	92.5	40-140	()				
Aroclor 1260		762.2	66	828.3		0	92	40-140	()				
Surr: Decachlorobiphe	enyl	33.28	0	33.11		0	101	40-140	()				
Surr: Tetrachloro-m-xy	/lene	32.63	0	33.11		0	98.5	45-124	()				

MSD S	Sample ID: 20081688-01B MSD								Analysis Date: 8/24/2020 04:24 PM				
Client ID:		Run IE): GC14_2	200824A		Se	qNo: 665	8683	Prep Date: 8/24	/2020	DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Aroclor 1016		747.5	66	819.8		0	91.2	40-140	766.4	2.49	50		
Aroclor 1260		725.1	66	819.8		0	88.5	40-140	762.2	4.98	50		
Surr: Decachlorobiphe	enyl	32.53	0	32.77		0	99.2	40-140	33.28	2.29	50		
Surr: Tetrachloro-m-x	ylene	32.61	0	32.77		0	99.5	45-124	32.63	0.0754	50		

The following samples were analyzed in this batch: 20081732-01C

Note:

Work Order: 20081732 Project: Oronogo QC BATCH REPORT

Batch ID: 163031	Instrument ID GC12			Metho	d: SW808	11A							
MBLK S	Sample ID: PBLKS1-16303	1-16303	1			Units: µg	/Kg	Analysis Date: 8/25/2020 02:47 PM					
Client ID:		Run ID: (GC12_2	200825A		SeqNo: 6660261		Prep Date: 8/2	24/2020	DF: 1			
Analyte	Re	sult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua		
4,4´-DDD		ND	10										
4,4'-DDE		ND	10										
4,4´-DDT		ND	10										
Aldrin		ND	10										
alpha-BHC		ND	10										
alpha-Chlordane	,	ND	10										
beta-BHC		ND	10										
Chlordane, Technical		ND	25										
delta-BHC		ND	10										
Dieldrin		ND	10										
Endosulfan I		ND	10										
Endosulfan II		ND	10										
Endosulfan sulfate		ND	10										
Endrin		ND	10										
Endrin aldehyde	65 63	ND	10										
Endrin ketone		ND	10										
gamma-BHC (Lindane)	Į.	ND	10										
gamma-Chlordane		ND	10										
Heptachlor		ND	10										
Heptachlor epoxide	3	ND	10										
Methoxychlor	1	ND	10										
Toxaphene		ND	60										
Surr: Decachlorobiph	nenyl 32	2.67	0	33.3		0 98.1	50-150	<u> </u>	0				
Surr: Tetrachloro-m-)	kylene 32	2.08	0	33.3		0 96.3	50-150	Y)	0				

Note:

Work Order: 20081732 Project: Oronogo

Batch ID: 163031	Instrument ID GC12		Metho	d: SW808	31A						
LCS S	ample ID: PLCSS1-163031-163	3031			ļ	Units: µg/k	(g	Analysis Date: 8/25/2020 03:01 P			
Client ID:	Run I	D: GC12_2	200825A		Se	eqNo: 6660	262	Prep Date: 8/2	24/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
4,4'-DDD	29.52	10	33.33		0	88.6	50-150		0		
4,4'-DDE	30.3	10	33.33		0	90.9	50-150		0		
4,4'-DDT	28.23	10	33.33		0	84.7	50-150	9	0		
Aldrin	30.53	10	33.33		0	91.6	50-150	1	0		
alpha-BHC	30.78	10	33.33		0	92.4	50-150	1	0		
alpha-Chlordane	30.9	10	33.33		0	92.7	50-150		0		
beta-BHC	30.13	10	33.33		0	90.4	50-150		0		
delta-BHC	30.33	10	33.33		0	91	50-150)	0		
Dieldrin	31	10	33.33		0	93	50-150	8	0		
Endosulfan I	30.55	10	33.33		0	91.7	50-150		0		
Endosulfan II	30.27	10	33.33		0	90.8	50-150		0		
Endosulfan sulfate	31.07	10	33.33		0	93.2	50-150		0		
Endrin	32.82	10	33.33		0	98.5	50-150	1	0		
Endrin aldehyde	29.48	10	33.33		0	88.5	50-150	1	0		
Endrin ketone	29.65	10	33.33		0	89	50-150	1	0		
gamma-BHC (Lindane)	29.92	10	33.33		0	89.8	50-150	1	0		
gamma-Chlordane	30.72	10	33.33		0	92.2	50-150		0		
Heptachlor	22.57	10	33.33		0	67.7	50-150		0		
Heptachlor epoxide	30.9	10	33.33		0	92.7	50-150)	0		
Methoxychlor	28.38	10	33.33		0	85.2	50-150	1	0		
Surr: Decachlorobiph	enyl 31.45	0	33.3		0	94.4	50-150		0		
Surr: Tetrachloro-m-x	ylene 30.45	0	33.3		0	91.4	50-150		0		

Work Order: 20081732 Project: Oronogo

Batch ID: 163031	Instrument ID GC1	2		Metho	d: SW8081	Α						
MS	Sample ID: 20081688-0 1	IB MS				Units: µg/k	(g	Analysis Date: 8/25/2020 03:15 PM				
Client ID:		Run ID:	GC12_2	200825A		SeqNo: 666 0	0263	Prep Date: 8/2	4/2020	DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
4,4´-DDD		22.37	9.7	32.18	2.774	4 60.9	50-150	(
4,4´-DDE		37.01	9.7	32.18	26.79	31.8	50-150	()		S	
4,4´-DDT		31.51	9.7	32.18	13.41	56.2	50-150	()			
Aldrin		20.29	9.7	32.18	(63.1	50-150	()			
alpha-BHC		20.57	9.7	32.18	(63.9	50-150	()			
alpha-Chlordane		25.17	9.7	32.18	7.304	55.5	50-150	()			
beta-BHC		19.28	9.7	32.18	(59.9	50-150	()			
delta-BHC		20.21	9.7	32.18	(0 62.8	50-150	()			
Dieldrin		21.71	9.7	32.18	1.97	61.3	50-150	C)			
Endosulfan I		20.63	9.7	32.18	(64.1	50-150	()			
Endosulfan II		19.57	9.7	32.18	(60.8	50-150	()			
Endosulfan sulfate		20.74	9.7	32.18	(64.5	50-150	()			
Endrin		22.3	9.7	32.18	(69.3	50-150	()			
Endrin aldehyde		17.81	9.7	32.18	(55.4	50-150	()			
Endrin ketone	l l	19.95	9.7	32.18	(62	50-150	C)			
gamma-BHC (Lindane)	20.57	9.7	32.18	(63.9	50-150	C)			
gamma-Chlordane		22.19	9.7	32.18	4.645	5 54.5	50-150	C)			
Heptachlor		19.71	9.7	32.18	(61.3	50-150	()			
Heptachlor epoxide		21.15	9.7	32.18	2.101	59.2	50-150	()			
Methoxychlor		23.59	9.7	32.18	(73.3	50-150	()			
Surr: Decachlorobip	henyl	22.59	0	32.15	(70.3	50-150	()			
Surr: Tetrachloro-m-	xylene	20.61	0	32.15	(64.1	50-150	()			

Work Order: 20081732 Project: Oronogo QC BATCH REPORT

Batch ID: 163031 Inst	rument ID GC12		Method	d: SW8081A	2					
MSD Sample IE	D: 20081688-01B MSD				Units: µg/k	(g	Analysis	Date: 8/25	/2020 03:	28 PM
Client ID:	Run ID	GC12_	200825A	Se	eqNo: 6666	0264	Prep Date: 8/24	/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
4,4´-DDD	25.52	10	33.29	2.774	68.3	50-150	22.37	13.2	35	
4,4'-DDE	49.22	10	33.29	26.79	67.4	50-150	37.01	28.3	35	
4,4´-DDT	39.1	10	33.29	13.41	77.2	50-150	31.51	21.5	35	
Aldrin	22.95	10	33.29	0	69	50-150	20.29	12.3	35	
alpha-BHC	23.57	10	33.29	0	70.8	50-150	20.57	13.6	35	
alpha-Chlordane	29.43	10	33.29	7.304	66.5	50-150	25.17	15.6	35	
beta-BHC	22.02	10	33.29	0	66.2	50-150	19.28	13.3	35	
delta-BHC	22.7	10	33.29	0	68.2	50-150	20.21	11.6	35	
Dieldrin	25	10	33.29	1.97	69.2	50-150	21.71	14.1	35	
Endosulfan I	23.3	10	33.29	0	70	50-150	20.63	12.2	35	
Endosulfan II	21.46	10	33.29	0	64.5	50-150	19.57	9.2	35	
Endosulfan sulfate	22.44	10	33.29	0	67.4	50-150	20.74	7.85	35	
Endrin	24.8	10	33.29	0	74.5	50-150	22.3	10.6	35	
Endrin aldehyde	18.46	10	33.29	0	55.5	50-150	17.81	3.56	35	
Endrin ketone	21.87	10	33.29	0	65.7	50-150	19.95	9.17	35	
gamma-BHC (Lindane)	23.69	10	33.29	0	71.2	50-150	20.57	14.1	35	
gamma-Chlordane	25.4	10	33.29	4.645	62.4	50-150	22.19	13.5	35	
Heptachlor	23.05	10	33.29	0	69.3	50-150	19.71	15.6	35	
Heptachlor epoxide	24.19	10	33.29	2.101	66.3	50-150	21.15	13.4	35	
Methoxychlor	24.6	10	33.29	0	73.9	50-150	23.59	4.19	35	

The following samples were analyzed in this batch:

Surr: Decachlorobiphenyl

Surr: Tetrachloro-m-xylene

20081732-01C

33.26

33.26

0

0

75.5

72.9

50-150

50-150

0

0

25.12

24.24

35

35

10.6

16.1

22.59

20.61

Work Order: 20081732 Project: Oronogo

MBLK	Sample ID: MBLK-1630	25-16302	5			Units: mg/	/Kg	Analysis	Date: 8/24	1/2020 12:	18 PN
Client ID:		Run IE): HG4_20	00824A		SeqNo: 665	5526	Prep Date: 8/24		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		ND	0.020								
LCS	Sample ID: LCS-16302	5-163025				Units: mg/	/Kg	Analysis	Date: 8/24	I/2020 12:	19 PN
Client ID:		Run IE): HG4_2	00824A		SeqNo: 665	5527	Prep Date: 8/24	/2020	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		0.1825	0.020	0.1665		0 110	80-120	0			
MS	Sample ID: 20081732-0	1CMS				Units: mg/	/Kg	Analysis	Date: 8/24	1/2020 01:	21 PN
Client ID: Ray 01		Run IE): HG4_2	00824A		SeqNo: 665	5559	Prep Date: 8/24	/2020	DF: 2	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury	ì	0.5038	0.030	0.1261	0.426	63 61.4	75-125	0			S
MSD	Sample ID: 20081732-0	1CMSD				Units: mg/	/Kg	Analysis	Date: 8/24	1/2020 01:	23 PN
Client ID: Ray 01		Run IE): HG4_20	00824A		SeqNo: 665	5560	Prep Date: 8/24	/2020	DF: 2	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Mercury		0.4765	0.030	0.1269	0.426	39.5	75-125	0.5038	5.57	35	S

Work Order: 20081732 Project: Oronogo

Batch ID: 163020	Instrument ID ICPMS4		Method	: SW602	20B					
MBLK	Sample ID: MBLK-163020-163020	Ŋ			Units: mg/l	Kg	Analys	is Date: 8/2	4/2020 07	:05 PN
Client ID:	Run ID:	ICPMS4	4_200824B		SeqNo: 6656	6747	Prep Date: 8/2	4/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Aluminum	ND	2.0								
Antimony	ND	0.25								
Arsenic	ND	0.25								
Barium	ND	0.25								
Beryllium	ND	0.10								
Cadmium	ND	0.10								
Calcium	ND	25								
Chromium	ND	0.25								
Cobalt	ND	0.25								
Copper	ND	0.25								
Iron	ND	10								
Lead	ND	0.25								
Magnesium	ND	10								
Manganese	ND	0.25								
Nickel	ND	0.25								
Potassium	ND	10								
Selenium	ND	0.25								
Silver	ND	0.25								
Sodium	ND	15								
Thallium	ND	0.25								
Vanadium	ND	0.25								
Zinc	ND	0.50						_		

Work Order: 20081732 Project: Oronogo

Batch ID: 163020	Instrument ID ICPMS4		Method	d: SW602	20B						
LCS	Sample ID: LCS-163020-163020				Į	Units: mg/	Kg	Analys	is Date: 8/2	4/2020 07	7:07 PM
Client ID:	Run II	: ICPMS	4_200824B		Se	eqNo: 665	6748	Prep Date: 8/2	4/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	5.668	2.0	5		0	113	80-120)		
Antimony	5.489	0.25	5		0	110	80-120)		
Arsenic	5.262	0.25	5		0	105	80-120)		
Barium	5.785	0.25	5		0	116	80-120)		
Beryllium	5.512	0.10	5		0	110	80-120)		
Cadmium	5.812	0.10	5		0	116	80-120	()		
Calcium	579.2	25	500		0	116	80-120)		
Chromium	5.537	0.25	5		0	111	80-120)		
Cobalt	5.393	0.25	5		0	108	80-120)		
Copper	5.538	0.25	5		0	111	80-120)		
Iron	545.7	10	500		0	109	80-120)		
Lead	5.786	0.25	5		0	116	80-120)		
Magnesium	556.8	10	500		0	111	80-120)		
Manganese	5.616	0.25	5		0	112	80-120)		
Nickel	5.398	0.25	5		0	108	80-120)		
Potassium	551.4	10	500		0	110	80-120)		
Selenium	5.58	0.25	5		0	112	80-120)		
Silver	5.672	0.25	5		0	113	80-120)		
Sodium	548.8	15	500		0	110	80-120)		
Thallium	5.48	0.25	5		0	110	80-120)		
Vanadium	5.985	0.25	5		0	120	80-120)		
Zinc	5.364	0.50	5		0	107	80-120)		

Work Order: 20081732 Project: Oronogo

Batch ID: 163020	Instrument ID ICPMS4	l		Method	d: SW6020B						
MS	Sample ID: 20081732-01CM	IS				Units: mg/	Kg	Analysi	s Date: 8/2	4/2020 07	:10 PM
Client ID: Ray 01	F	Run ID:	ICPMS4	_200824B	Se	eqNo: 665	6750	Prep Date: 8/2	4/2020	DF: 1	
					SPK Ref		Control	RPD Ref		RPD	
Analyte	Res	ult	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua
Antimony	6.0	35	0.39	7.849	0.5561	69.8	75-125	()		S
Arsenic	9.0	89	0.39	7.849	2.271	86.9	75-125	()		
Barium	120	8.0	0.39	7.849	123.9	-40.2	75-125	()		SO
Beryllium	8.	41	0.16	7.849	0.5272	100	75-125	()		
Cadmium	10	0.5	0.16	7.849	3.281	92	75-125	C)		
Calcium	21	50	39	784.9	1526	79.4	75-125	()		
Chromium	15.	94	0.39	7.849	7.73	105	75-125	()		
Cobalt	12.	08	0.39	7.849	5.752	80.6	75-125	()		
Copper	16.	25	0.39	7.849	9.398	87.2	75-125	()		
Iron	68	06	16	784.9	5878	118	75-125	()		0
Lead	80.	87	0.39	7.849	78.16	34.4	75-125	()		SO
Magnesium	14	18	16	784.9	441.1	125	75-125	()		
Nickel	13.	18	0.39	7.849	5.637	96.1	75-125	()		
Potassium	14	85	16	784.9	422	135	75-125	()		S
Selenium	7.2	16	0.39	7.849	0.3704	87.2	75-125	()		
Silver	7.9	92	0.39	7.849	0.6991	92.9	75-125	C)		
Sodium	811	1.4	24	784.9	17.28	101	75-125	()		
Thallium	7.7	57	0.39	7.849	0.1107	97.4	75-125	()		
Vanadium	23.	32	0.39	7.849	13.43	126	75-125	()		S
MS	Sample ID: 20081732-01CM	IS				Units: mg/	Kg	Analysi	s Date: 8/2	5/2020 01	:47 PN
Client ID: Ray 01	F	Run ID:	ICPMS	_200825B	Se	eqNo: 6658	8390	Prep Date: 8/2	4/2020	DF: 10	00
Analyte	Res	sult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Aluminum	74	85	310	7.849	4203	41800	75-125	()		SO
MS	Sample ID: 20081732-01CM	IS				Units: mg/	Ka	Analysi	s Date: 8/2	5/2020 01	:56 PN
Client ID: Ray 01			ICPMS3	3_200825B		eqNo: 665	://. 	Prep Date: 8/2		DF: 10	
					SPK Ref	911	Control	RPD Ref		RPD	
Analyte	Res	sult	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua
Manganese	580	0.1	3.9	7.849	653.2	-931	75-125	()		SO
Zinc	534	4.6	7.8	7.849	460.3	947	75-125				so

Work Order: 20081732 Project: Oronogo QC BATCH REPORT

MSD	Sample ID: 20081732-01CM	SD				Units: mg /l	Kg	Analysis	Date: 8/24	/2020 07:	12 PM
Client ID: Ray 01	R	Run ID:	ICPMS4	_200824B	Se	eqNo: 6656	6751	Prep Date: 8/24	2020	DF: 1	
Analyte	Resi	ult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Antimony	6.23	35	0.40	7.924	0.5561	71.7	75-125	6.035	3.25	20	S
Arsenic	9.27	76	0.40	7.924	2.271	88.4	75-125	9.089	2.04	20	
Barium	120	1.4	0.40	7.924	123.9	-44.8	75-125	120.8	0.323	20	SO
Beryllium	8.50	02	0.16	7.924	0.5272	101	75-125	8.41	1.08	20	
Cadmium	9.98	81	0.16	7.924	3.281	84.6	75-125	10.5	5.09	20	
Calcium	227	74	40	792.4	1526	94.3	75-125	2150	5.6	20	
Chromium	16.4	48	0.40	7.924	7.73	110	75-125	15.94	3.35	20	
Cobalt	12.3	39	0.40	7.924	5.752	83.8	75-125	12.08	2.51	20	
Copper	16.6	65	0.40	7.924	9.398	91.5	75-125	16.25	2.46	20	
Iron	677	77	16	792.4	5878	114	75-125	6806	0.425	20	O
_ead	66.6	68	0.40	7.924	78.16	-145	75-125	80.87	19.2	20	SO
Magnesium	139	92	16	792.4	441.1	120	75-125	1418	1.86	20	
Nickel	13.3	31	0.40	7.924	5.637	96.8	75-125	13.18	1.01	20	
Potassium	145	57	16	792.4	422	131	75-125	1485	1.88	20	S
Selenium	7.39	97	0.40	7.924	0.3704	88.7	75-125	7.216	2.48	20	
Silver	8.23	38	0.40	7.924	0.6991	95.1	75-125	7.992	3.04	20	
Sodium	824	8.	24	792.4	17.28	102	75-125	811.4	1.64	20	
Thallium	7.73	37	0.40	7.924	0.1107	96.2	75-125	7.757	0.253	20	
Vanadium	23.3	31	0.40	7.924	13.43	125	75-125		0.00772	20	
MSD	Sample ID: 20081732-01CM	SD				Units: mg/l	Kg	Analysis	Date: 8/25	/2020 01:	48 PM
Client ID: Ray 01	R	Run ID:	ICPMS3	_200825B	Se	eqNo: 6658	3392	Prep Date: 8/24	2020	DF: 100	0
Analyte	Resi	ult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	730	03	320	7.924	4203	39100	75-125	7587	3.81	20	so
MSD	Sample ID: 20081732-01CM	SD				Units: mg/l	Kg	Analysis	Date: 8/25	/2020 01:	58 PM
Client ID: Ray 01	R	Run ID:	ICPMS3	_200825B	Se	eqNo: 6658	3405	Prep Date: 8/24	2020	DF: 10	
					SPK Ref		Control	RPD Ref		RPD	
Analyte	Resi	ult	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua
Manganese	611		4.0	7.924	653.2	-529	75-125	580.1	5.23	20	SO
Zinc	427	8.	7.9	7.924	460.3	-410	75-125	534.6	22.2	20	SRO

Note:

Work Order: 20081732 Project: Oronogo

Client:

MBLK Sample ID:	SBLKS1-163029-163	029			Units: µg/k	(g	Analys	is Date: 8/2	5/2020 01	:27 PM
Client ID:			0_200825A		SeqNo: 6657	514041/5400 A	Prep Date: 8/2		DF: 1	
				SPK Ref Value		Control Limit	RPD Ref Value		RPD Limit	Oue
Analyte	Result	PQL	SPK Val	value	%REC	Lillin	value	%RPD	Liiiii	Qua
1,1`-Biphenyl	ND	33								
2,4,5-Trichlorophenol	ND	33								
2,4,6-Trichlorophenol	ND	33								
2,4-Dichlorophenol	ND	33								
2,4-Dimethylphenol	ND	33								
2,4-Dinitrophenol	ND	33								
2,4-Dinitrotoluene	ND	33								
2,6-Dinitrotoluene	ND	33								
2-Chloronaphthalene	ND	6.7								
2-Chlorophenol	ND	33								
2-Methylnaphthalene	ND	6.7								
2-Methylphenol	ND	33								
2-Nitroaniline	ND	33								
2-Nitrophenol	ND	33								
3&4-Methylphenol	ND	33								
3,3'-Dichlorobenzidine	ND	170								
3-Nitroaniline	ND	33								
1,6-Dinitro-2-methylphenol	ND	33								
1-Bromophenyl phenyl ether	ND	33								
1-Chloro-3-methylphenol	ND	33								
1-Chloroaniline	ND	67								
1-Chlorophenyl phenyl ether	ND	33								
1-Nitroaniline	ND	170								
1-Nitrophenol	ND	33								
Acenaphthene	ND	6.7								
Acenaphthylene	ND	6.7								
Acetophenone	ND	33								
Anthracene	ND	6.7								
Atrazine	ND	33								
Benzaldehyde	ND	67								
Benzo(a)anthracene	ND	6.7								
Benzo(a)pyrene	ND ND	6.7								
	ND ND	6.7								
Benzo(b)fluoranthene	ND ND	6.7								
Benzo(g,h,i)perylene	ND ND									
Benzo(k)fluoranthene	ND ND	6.7								
Bis(2-chloroethoxy)methane										
Bis(2-chloroethyl)ether	ND	33								
Bis(2-chloroisopropyl)ether	ND	33								
Bis(2-ethylhexyl)phthalate	ND	33								
Butyl benzyl phthalate	ND	33								
Caprolactam	ND	33								

Work Order: 20081732
Project: Oronogo

Batch ID: 163029	Instrument ID SVMS10		Method:	SW846 8270	D			
Chrysene	ND	6.7						
Dibenzo(a,h)anthracene	ND	6.7						
Dibenzofuran	ND	33						
Diethyl phthalate	ND	33						
Dimethyl phthalate	ND	33						
Di-n-butyl phthalate	ND	33						
Di-n-octyl phthalate	ND	33						
Fluoranthene	ND	6.7						
Fluorene	ND	6.7						
Hexachlorobenzene	ND	33						
Hexachlorobutadiene	ND	33						
Hexachlorocyclopentadiene	e ND	33						
Hexachloroethane	ND	33						
Indeno(1,2,3-cd)pyrene	ND	6.7						
Isophorone	ND	170						
Naphthalene	ND	6.7						
Nitrobenzene	ND	170						
N-Nitrosodi-n-propylamine	ND	33						
N-Nitrosodiphenylamine	ND	33						
Pentachlorophenol	ND	33						
Phenanthrene	ND	6.7						
Phenol	ND	33						
Pyrene	ND	6.7						
Surr: 2,4,6-Tribromopher	nol 2385	0	3333	0	71.5	38-92	0	
Surr: 2-Fluorobiphenyl	2602	0	3333	0	78.1	44-107	0	
Surr: 2-Fluorophenol	2534	0	3333	0	76	37-109	0	
Surr: 4-Terphenyl-d14	2889	0	3333	0	86.7	52-123	0	
Surr: Nitrobenzene-d5	2472	0	3333	0	74.2	41-94	0	
Surr: Phenol-d6	2640	0	3333	0	79.2	28-111	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20081732 Project: Oronogo

Batch ID: 163029 Instrument ID SVMS10 Method: SW846 8270D

LCS Sample ID: SL	CSS1-163029-163	029			ι	Jnits: µg/k	(g	Analysi	s Date: 8/2	4/2020 08	:53 PM
Client ID:	Run ID	SVMS1	0_200824A		Se	qNo: 665	7879	Prep Date: 8/2	4/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
	550 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			50000000							Gua
1,1`-Biphenyl	1187	33	1333		0	89.1	53-97	0			
2,4,5-Trichlorophenol	1059	33	1333		0	79.5	52-111	0			
2,4,6-Trichlorophenol	1067	33	1333		0	80	46-105	0			
2,4-Dichlorophenol	1072	33	1333		0	80.4	47-96	0			
2,4-Dimethylphenol	1184	33	1333		0	88.8	49-97	0			
2,4-Dinitrophenol	674	33	1333		0	50.6	10-106	0			
2,4-Dinitrotoluene	1120	33	1333		0	84	58-110	0			
2,6-Dinitrotoluene	1120	33	1333		0	84	59-108	0			
2-Chloronaphthalene	1105	6.7	1333		0	82.9	56-104	0			
2-Chlorophenol	1034	33	1333		0	77.6	50-104	0	,		
2-Methylnaphthalene	1136	6.7	1333		0	85.2	54-96	0			
2-Methylphenol	1113	33	1333		0	83.5	49-105	C			
2-Nitroaniline	1146	33	1333		0	86	54-107	C			
2-Nitrophenol	1032	33	1333		0	77.4	51-94	C			
3&4-Methylphenol	1073	33	1333		0	80.5	48-105	C			
3,3'-Dichlorobenzidine	891.3	170	1333		0	66.9	39-99	0	7		
3-Nitroaniline	912	33	1333		0	68.4	17-92	0	l,		
1,6-Dinitro-2-methylphenol	1004	33	1333		0	75.3	32-103	0	E		
1-Bromophenyl phenyl ether	1169	33	1333		0	87.7	60-106	0	i.		
4-Chloro-3-methylphenol	1134	33	1333		0	85.1	51-101	C	i .		
4-Chloroaniline	1159	67	1333		0	87	27-110	0	l		
4-Chlorophenyl phenyl ether	1136	33	1333		0	85.2	58-106	C			
4-Nitroaniline	698	170	1333		0	52.4	21-100	0	l.		
4-Nitrophenol	1060	33	1333		0	79.5	29-120	0	E		
Acenaphthene	1151	6.7	1333		0	86.3	55-101	0)		
Acenaphthylene	1187	6.7	1333		0	89	59-106	C	Ĺ		
Acetophenone	1109	33	1333		0	83.2	51-100	C)		
Anthracene	1186	6.7	1333		0	89	67-105	C	ĺ.		
Atrazine	1256	33	1333		0	94.2	45-125	0) i		
Benzaldehyde	364.7	67	1333		0	27.4	10-120	0	Ü		
Benzo(a)anthracene	1204	6.7	1333		0	90.3	68-105	C	Ď		
Benzo(a)pyrene	1161	6.7	1333		0	87.1	68-110	0			
Benzo(b)fluoranthene	1186	6.7	1333		0	89	65-110	C			
Benzo(g,h,i)perylene	1305	6.7	1333		0	97.9	60-120	0	<u> </u>		
Benzo(k)fluoranthene	1162	6.7	1333		0	87.2	66-113	C	i i		
Bis(2-chloroethoxy)methane	1093	33	1333		0	82	53-96	0	ĺ		
Bis(2-chloroethyl)ether	1085	33	1333		0	81.4	47-108	C			
Bis(2-chloroisopropyl)ether	1077	33	1333		0	80.8	47-107	0	ř.		
Bis(2-ethylhexyl)phthalate	1258	33	1333		0	94.4	59-117	0	<u></u>		
Butyl benzyl phthalate	1205	33	1333		0	90.4	59-106	0			
Caprolactam	1081	33	1333		0	81.1	42-105	0			
Carbazole	1187	33	1333		0	89	67-108	0			

Work Order: 20081732
Project: Oronogo

Batch ID: 163029	Instrument ID SVMS10		Method:	SW846 827	0D			
Chrysene	1204	6.7	1333	0	90.3	68-108	0	
Dibenzo(a,h)anthracene	1203	6.7	1333	0	90.2	62-119	0	
Dibenzofuran	1139	33	1333	0	85.5	60-104	0	
Diethyl phthalate	1123	33	1333	0	84.2	62-111	0	
Dimethyl phthalate	1132	33	1333	0	84.9	62-106	0	
Di-n-butyl phthalate	1228	33	1333	0	92.1	59-105	0	
Di-n-octyl phthalate	1249	33	1333	0	93.7	51-123	0	
Fluoranthene	1180	6.7	1333	0	88.5	67-106	0	
Fluorene	1160	6.7	1333	0	87	59-107	0	
Hexachlorobenzene	1150	33	1333	0	86.3	62-103	0	
Hexachlorobutadiene	1052	33	1333	0	78.9	51-94	0	
Hexachlorocyclopentadiene	1314	33	1333	0	98.6	25-120	0	
Hexachloroethane	1049	33	1333	0	78.7	55-93	0	
Indeno(1,2,3-cd)pyrene	1217	6.7	1333	0	91.3	56-120	0	
Isophorone	1125	170	1333	0	84.4	52-99	0	
Naphthalene	1091	6.7	1333	0	81.9	46-98	0	
Nitrobenzene	1091	170	1333	0	81.9	53-95	0	
N-Nitrosodi-n-propylamine	1084	33	1333	0	81.3	50-104	0	
N-Nitrosodiphenylamine	1181	33	1333	0	88.6	63-107	0	
Pentachlorophenol	1063	33	1333	0	79.7	34-106	0	
Phenanthrene	1150	6.7	1333	0	86.3	66-101	0	
Phenol	1058	33	1333	0	79.4	44-109	0	
Pyrene	1228	6.7	1333	0	92.1	60-119	0	
Surr: 2,4,6-Tribromophen	ol 2769	0	3333	0	83.1	38-92	0	
Surr: 2-Fluorobiphenyl	2651	0	3333	0	79.5	44-107	0	
Surr: 2-Fluorophenol	2608	0	3333	0	78.2	37-109	0	
Surr: 4-Terphenyl-d14	3013	0	3333	0	90.4	52-123	0	
Surr: Nitrobenzene-d5	2713	0	3333	0	81.4	41-94	0	
Surr: Phenol-d6	2811	0	3333	0	84.3	28-111	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20081732 Project: Oronogo

Batch ID: 163029 Instrument ID SVMS10 Method: SW846 8270D

MS Sample ID: 200	081677-01B MS				ι	Jnits: µg/k	(g	Analysi	s Date: 8/2	5/2020 04	:37 PM
Client ID:	Run II	SVMS1	0_200825A		Se	qNo: 6661	1796	Prep Date: 8/2	4/2020	DF: 10)
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
	1081			20.28402044	_		50.07				
1,1`-Biphenyl	TO STATE OF THE ST	320	1302		0	83	53-97	(Ti.		
2,4,5-Trichlorophenol	1081	320	1302		0	83	52-111	(
2,4,6-Trichlorophenol	1094	320	1302		0	84	46-105	(
2,4-Dichlorophenol	1009	320	1302		0	77.5	47-96	(
2,4-Dimethylphenol	1113	320	1302		0	85.5	49-97	(<u> </u>		
2,4-Dinitrophenol	ND	320	1302		0	0	10-106	(S
2,4-Dinitrotoluene	1035	320	1302		0	79.5	58-110	(
2,6-Dinitrotoluene	1035	320	1302		0	79.5	59-108	C)		
2-Chloronaphthalene	1028	65	1302		0	79	56-104		105		
2-Chlorophenol	1074	320	1302		0	82.5	50-104	(
2-Methylnaphthalene	1002	65	1302		0	77	54-96	()		
2-Methylphenol	1074	320	1302		0	82.5	49-105	()		
2-Nitroaniline	1068	320	1302		0	82	54-107	()		
2-Nitrophenol	995.9	320	1302		0	76.5	51-94	()		
3&4-Methylphenol	1028	320	1302		0	79	48-105	()		
3,3'-Dichlorobenzidine	1068	1,600	1302		0	82	39-99	()		J
3-Nitroaniline	807.1	320	1302		0	62	17-92	()		
4,6-Dinitro-2-methylphenol	260.4	320	1302		0	20	32-103	()		JS
4-Bromophenyl phenyl ether	1113	320	1302		0	85.5	60-106	()		
4-Chloro-3-methylphenol	1035	320	1302		0	79.5	51-101	()		
4-Chloroaniline	813.6	650	1302		0	62.5	27-110	()		
4-Chlorophenyl phenyl ether	1041	320	1302		0	80	58-106	(
4-Nitroaniline	943.8	1,600	1302		0	72.5	21-100	(J
4-Nitrophenol	ND	320	1302		0	0	29-120	(S
Acenaphthene	1068	65	1302		0	82	55-101	(
Acenaphthylene	1107	65	1302		0	85	59-106	(17		
Acetophenone	950.3	320	1302		0	73	51-100	(
Anthracene	1081	65	1302		0	83	67-105	(
Atrazine	1126	320	1302		0	86.5	45-125	(
	ND	Charles and	F-110-2-1-2-1-1		200.2	111111111111111111111111111111111111111	0.000				C
Benzaldehyde	1373	650	1302	400	0	0	10-120	(S
Benzo(a)anthracene		65	1302	199		90.2	68-105	(
Benzo(a)pyrene	1302	65	1302	173		86.7	68-110	(
Benzo(b)fluoranthene	1426	65	1302	276		88.3	65-110	(
Benzo(g,h,i)perylene	1634	65	1302	77.1		120	60-120	(
Benzo(k)fluoranthene	1211	65	1302	109		84.6	66-113	(
Bis(2-chloroethoxy)methane	930.8	320	1302		0	71.5	53-96	(
Bis(2-chloroethyl)ether	1087	320	1302		0	83.5	47-108	C			
Bis(2-chloroisopropyl)ether	982.9	320	1302		0	75.5	47-107	C)		
Bis(2-ethylhexyl)phthalate	1198	320	1302		0	92	59-117	(
Butyl benzyl phthalate	1204	320	1302		0	92.5	59-106	()		
Caprolactam	956.8	320	1302		0	73.5	42-105	()		
Carbazole	1087	320	1302		0	83.5	67-108	()		

Work Order: 20081732
Project: Oronogo

Batch ID: 163029	Instrument ID SVMS10		Method:	SW846 827	'0D			
Chrysene	1334	65	1302	173.6	89.2	68-108	0	
Dibenzo(a,h)anthracene	1243	65	1302	0	95.5	62-119	0	
Dibenzofuran	1126	320	1302	0	86.5	60-104	0	
Diethyl phthalate	1028	320	1302	0	79	62-111	0	
Dimethyl phthalate	982.9	320	1302	0	75.5	62-106	0	
Di-n-butyl phthalate	1126	320	1302	0	86.5	59-105	0	
Di-n-octyl phthalate	1191	320	1302	0	91.5	51-123	0	
Fluoranthene	1406	65	1302	289.4	85.8	67-106	0	
Fluorene	1081	65	1302	0	83	59-107	0	
Hexachlorobenzene	1035	320	1302	0	79.5	62-103	0	
Hexachlorobutadiene	1009	320	1302	0	77.5	51-94	0	
Hexachlorocyclopentadiene	318.9	320	1302	0	24.5	25-120	0	JS
Hexachloroethane	716	320	1302	0	55	55-93	0	
Indeno(1,2,3-cd)pyrene	1478	65	1302	141.5	103	56-120	0	
Isophorone	937.3	1,600	1302	0	72	52-99	0	J
Naphthalene	995.9	65	1302	0	76.5	46-98	0	
Nitrobenzene	976.4	1,600	1302	0	75	53-95	0	J
N-Nitrosodi-n-propylamine	956.8	320	1302	0	73.5	50-104	0	
N-Nitrosodiphenylamine	1107	320	1302	0	85	63-107	0	
Pentachlorophenol	533.8	320	1302	0	41	34-106	0	
Phenanthrene	1224	65	1302	96.47	86.6	66-101	0	
Phenol	1100	320	1302	0	84.5	44-109	0	
Pyrene	1478	65	1302	276.5	92.3	60-119	0	
Surr: 2,4,6-Tribromopheno	ol 2441	0	3254	0	75	38-92	0	
Surr: 2-Fluorobiphenyl	2493	0	3254	0	76.6	44-107	0	
Surr: 2-Fluorophenol	2467	0	3254	0	75.8	37-109	0	
Surr: 4-Terphenyl-d14	2955	0	3254	0	90.8	52-123	0	
Surr: Nitrobenzene-d5	2298	0	3254	0	70.6	41-94	0	
Surr: Phenol-d6	2526	0	3254	0	77.6	28-111	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20081732 Project: Oronogo

Batch ID: 163029 Instrument ID SVMS10 Method: SW846 8270D

MSD Sample ID:	20081677-01B MSD				Units: µg/Kg Analysis Date: 8/2				Date: 8/25	5/2020 05:04 PM		
Client ID:	Run II	D: SVMS1	0_200825A		Se	qNo: 666	1797	Prep Date: 8/24	/2020	DF: 10		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
	27000000			20.28/02/32	_		50.07	1001			-	
1,1`-Biphenyl	1007	330	1316		0	76.5	53-97	1081	7.01	30		
2,4,5-Trichlorophenol	987.6	330	1316		0	75	52-111	1081	8.99	30		
2,4,6-Trichlorophenol	954.6	330	1316		0	72.5	46-105	1094	13.6	30		
2,4-Dichlorophenol	948.1	330	1316		0	72	47-96	1009	6.22	30		
2,4-Dimethylphenol	1014	330	1316		0	77	49-97	1113	9.33	30		
2,4-Dinitrophenol	ND 045.4	330	1316		0	0	10-106	0	0	30	S	
2,4-Dinitrotoluene	915.1	330	1316		0	69.5	58-110	1035	12.3	30		
2,6-Dinitrotoluene	915.1	330	1316		0	69.5	59-108	1035	12.3	30		
2-Chloronaphthalene	981	66	1316		0	74.5	56-104	1028	4.73	30		
2-Chlorophenol	915.1	330	1316		0	69.5	50-104	1074	16	30		
2-Methylnaphthalene	954.6	66	1316		0	72.5	54-96	1002	4.88	30		
2-Methylphenol	921.7	330	1316		0	70	49-105	1074	15.3	30		
2-Nitroaniline	967.8	330	1316		0	73.5	54-107	1068	9.8	30		
2-Nitrophenol	902	330	1316		0	68.5	51-94	995.9	9.9	30		
3&4-Methylphenol	895.4	330	1316		0	68	48-105	1028	13.8	30		
3,3'-Dichlorobenzidine	961.2	1,600	1316		0	73	39-99	1068	0	30	J	
3-Nitroaniline	697.9	330	1316		0	53	17-92	807.1	14.5	30		
1,6-Dinitro-2-methylphenol	171.2	330	1316		0	13	32-103	260.4	0	30	JS	
I-Bromophenyl phenyl ether	1007	330	1316		0	76.5	60-106	1113	9.97	30		
1-Chloro-3-methylphenol	941.5	330	1316		0	71.5	51-101	1035	9.46	30		
1-Chloroaniline	691.3	660	1316		0	52.5	27-110	813.6	16.3	30		
1-Chlorophenyl phenyl ether	961.2	330	1316		0	73	58-106	1041	8.01	30		
I-Nitroaniline	875.6	1,600	1316		0	66.5	21-100	943.8	0	30	J	
1-Nitrophenol	ND	330	1316		0	0	29-120	0	0	30	S	
Acenaphthene	994.1	66	1316		0	75.5	55-101	1068	7.12	30		
Acenaphthylene	1067	66	1316		0	81	59-106	1107	3.68	30		
Acetophenone	829.5	330	1316		0	63	51-100	950.3	13.6	30		
Anthracene	974.4	66	1316		0	74	67-105	1081	10.3	30		
Atrazine	1040	330	1316		0	79	45-125	1126	7.93	30		
Benzaldehyde	ND	660	1316		0	0	10-120	403.6	0	30	S	
Benzo(a)anthracene	1264	66	1316	199	.4	80.9	68-105	1373	8.29	30		
Benzo(a)pyrene	1192	66	1316	173		77.3	68-110	1302	8.84	30		
Benzo(b)fluoranthene	1317	66	1316	276	200	79	65-110	Maria Caraca	7.93	30		
Benzo(g,h,i)perylene	1541	66	1316	77.1		111	60-120	1634	5.87	30		
Benzo(k)fluoranthene	1106	66	1316	109		75.7	66-113	1211	9.03	30		
Bis(2-chloroethoxy)methane	849.3	330	1316	.50	0	64.5	53-96	930.8	9.16	30		
Bis(2-chloroethyl)ether	888.8	330	1316		0	67.5	47-108	1087	20.1	30		
Bis(2-chloroisopropyl)ether	862.5	330	1316		0	65.5	47-107	982.9	13.1	30		
Bis(2-ethylhexyl)phthalate	1106	330	1316		0	84	59-117	1198	7.95	30		
Butyl benzyl phthalate	1132	330	1316		0	86	59-106	1204	6.14	30		
Caprolactam	842.7	330	1316		0	64	42-105	956.8	12.7	30		
Carbazole	1027	330	1316		0	78	67-108	1087	5.67	30		

Work Order: 20081732
Project: Oronogo

Batch ID: 163029	Instrument ID SVMS10		Method:	SW846 827	'0D					
Chrysene	1211	66	1316	173.6	78.8	68-108	1334	9.66	30	
Dibenzo(a,h)anthracene	1146	66	1316	0	87	62-119	1243	8.18	30	
Dibenzofuran	1040	330	1316	0	79	60-104	1126	7.93	30	
Diethyl phthalate	948.1	330	1316	0	72	62-111	1028	8.14	30	
Dimethyl phthalate	915.1	330	1316	0	69.5	62-106	982.9	7.14	30	
Di-n-butyl phthalate	1047	330	1316	0	79.5	59-105	1126	7.3	30	
Di-n-octyl phthalate	1086	330	1316	0	82.5	51-123	1191	9.21	30	
Fluoranthene	1238	66	1316	289.4	72	67-106	1406	12.7	30	
Fluorene	967.8	66	1316	0	73.5	59-107	1081	11	30	
Hexachlorobenzene	954.6	330	1316	0	72.5	62-103	1035	8.07	30	
Hexachlorobutadiene	961.2	330	1316	0	73	51-94	1009	4.84	30	
Hexachlorocyclopentadiene	289.7	330	1316	0	22	25-120	318.9	0	30	JS
Hexachloroethane	612.3	330	1316	0	46.5	55-93	716	15.6	30	S
Indeno(1,2,3-cd)pyrene	1343	66	1316	141.5	91.3	56-120	1478	9.54	30	
Isophorone	895.4	1,600	1316	0	68	52-99	937.3	0	30	J
Naphthalene	934.9	66	1316	0	71	46-98	995.9	6.32	30	
Nitrobenzene	902	1,600	1316	0	68.5	53-95	976.4	0	30	J
N-Nitrosodi-n-propylamine	816.4	330	1316	0	62	50-104	956.8	15.8	30	
N-Nitrosodiphenylamine	1020	330	1316	0	77.5	63-107	1107	8.09	30	
Pentachlorophenol	401.6	330	1316	0	30.5	34-106	533.8	28.3	30	S
Phenanthrene	1099	66	1316	96.47	76.2	66-101	1224	10.7	30	
Phenol	915.1	330	1316	0	69.5	44-109	1100	18.4	30	
Pyrene	1323	66	1316	276.5	79.5	60-119	1478	11	30	
Surr: 2,4,6-Tribromophen	ol 2173	0	3292	0	66	38-92	2441	11.6	40	
Surr: 2-Fluorobiphenyl	2396	0	3292	0	72.8	44-107	2493	3.95	40	
Surr: 2-Fluorophenol	2153	0	3292	0	65.4	37-109	2467	13.6	40	
Surr: 4-Terphenyl-d14	2732	0	3292	0	83	52-123	2955	7.84	40	
Surr: Nitrobenzene-d5	2166	0	3292	0	65.8	41-94	2298	5.9	40	
Surr: Phenol-d6	2140	0	3292	0	65	28-111	2526	16.5	40	

The following samples were analyzed in this batch:

20081732-01C

Work Order: 20081732 Project: Oronogo QC BATCH REPORT

MBLK Sample ID: MBL	K-162977-16297	7			ι	Jnits: µg/K	(g-dry	Analysis	Date: 8/24	1/2020 12:	38 PM
Client ID:	Run ID	: VMS11	_200824A		Se	qNo: 6658	5503	Prep Date: 8/21	/2020	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Acetone	ND	100									
Surr: 1,2-Dichloroethane-d4	998	0	1000		0	99.8	70-130	0			
Surr: 4-Bromofluorobenzene	1024	0	1000		0	102	70-130	0			
Surr: Dibromofluoromethane	948	0	1000		0	94.8	70-130	0			
Surr: Toluene-d8	965.5	0	1000		0	96.6	70-130	0			
LCS Sample ID: LCS	-162977-162977				ι	Jnits: µg/K	(g-dry	Analysis	Date: 8/24	V2020 11:	31 AM
Client ID:	Run ID	: VMS11	_200824A		Se	qNo: 6658	5502	2 Prep Date: 8/21/2020		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Acetone	1096	100	1000		0	110	20-160	0			
Surr: 1,2-Dichloroethane-d4	1014	0	1000		0	101	70-130	0			
Surr: 4-Bromofluorobenzene	1006	0	1000		0	101	70-130	0			
Surr: Dibromofluoromethane	989	0	1000		0	98.9	70-130	0			
Surr: Toluene-d8	981.5	0	1000		0	98.2	70-130	0			
						TARRES AND					all and the latest and the
MS Sample ID: 2008	31579-01A MS				l	Jnits: µg/K	(g-dry	Analysis	Date: 8/24	1/2020 07:	45 PM
		: VMS11	_200824A			Jnits: µg/K eqNo: 665 6		Analysis Prep Date: 8/21/		DF: 1	45 PM
Client ID:		PQL	_200824A SPK Val	SPK Ref Value							
Client ID:	Run ID	PQL	SPK Val		Se	eqNo: 665 6	S816 Control	Prep Date: 8/21/	/2020	DF: 1 RPD	
Client ID: Analyte Acetone	Run IE Result			Value	Se	eqNo: 6656 %REC	6816 Control Limit	Prep Date: 8/21/ RPD Ref Value	/2020	DF: 1 RPD	Qua
Client ID:	Run ID Result 3148	PQL 120	SPK Val	Value	Se 82	eqNo: 6656 %REC 264	Control Limit 20-160	Prep Date: 8/21/ RPD Ref Value	/2020	DF: 1 RPD	Qua
Analyte Acetone Surr: 1,2-Dichloroethane-d4	Result 3148 1219	PQL 120	SPK Val 1177 1177	Value	Se 82 0	%REC 264 104	Control Limit 20-160 70-130	Prep Date: 8/21/ RPD Ref Value	/2020	DF: 1 RPD	Qua
Analyte Acetone Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene	Result 3148 1219 1184	PQL 120 0	SPK Val 1177 1177 1177	Value	82 0	%REC 264 104 101	Control Limit 20-160 70-130	Prep Date: 8/21/ RPD Ref Value 0 0	/2020	DF: 1 RPD	Qua
Analyte Acetone Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8	Result 3148 1219 1184 1188 1119	PQL 120 0 0	SPK Val 1177 1177 1177 1177	Value	82 0 0 0	%REC 264 104 101	Control Limit 20-160 70-130 70-130 70-130 70-130	Prep Date: 8/21/ RPD Ref Value 0 0 0 0 0	/2020	DF: 1 RPD Limit	Qua S
Analyte Acetone Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8	Result 3148 1219 1184 1188 1119	PQL 120 0 0 0	SPK Val 1177 1177 1177 1177	Value	See 82 0 0 0 0 U	%REC 264 104 101 101 95.1	Control Limit 20-160 70-130 70-130 70-130 70-130	Prep Date: 8/21/ RPD Ref Value 0 0 0 0 0	/2020 %RPD Date: 8/24	DF: 1 RPD Limit	Qua S
Analyte Acetone Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8 MSD Sample ID: 2008	Result 3148 1219 1184 1188 1119	PQL 120 0 0 0	SPK Val 1177 1177 1177 1177 1177	Value	82 0 0 0	%REC 264 104 101 101 95.1 Units: µg/N	Control Limit 20-160 70-130 70-130 70-130 70-130	Prep Date: 8/21/ RPD Ref Value 0 0 0 0 Analysis	/2020 %RPD Date: 8/24	DF: 1 RPD Limit	Qua S
Analyte Acetone Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8 MSD Sample ID: 2008 Client ID:	Result 3148 1219 1184 1188 1119 81579-01A MSD Run ID	PQL 120 0 0 0 0	SPK Val 1177 1177 1177 1177 1177 200824A	Value 39.8 SPK Ref	82 0 0 0	%REC 264 104 101 101 95.1 Units: µg/M	Control Limit 20-160 70-130 70-130 70-130 70-130 Cg-dry 5817 Control	Prep Date: 8/21/ RPD Ref Value 0 0 0 0 Analysis Prep Date: 8/21/ RPD Ref	/2020 %RPD Date: 8/24 /2020	DF: 1 RPD Limit W2020 08: DF: 1 RPD	Qua S
Analyte Acetone Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8 MSD Sample ID: 2008 Client ID:	Result 3148 1219 1184 1188 1119 81579-01A MSD Run ID	PQL 120 0 0 0 0 0 0 VMS11	SPK Val 1177 1177 1177 1177 1177 200824A SPK Val	SPK Ref Value	82 0 0 0	%REC 264 104 101 101 95.1 Units: µg/M	Control Limit 20-160 70-130 70-130 70-130 70-130 Gg-dry 6817 Control Limit	Prep Date: 8/21/ RPD Ref Value 0 0 0 0 Analysis Prep Date: 8/21/ RPD Ref Value	/2020 %RPD Date: 8/24 /2020 %RPD	DF: 1 RPD Limit W2020 08: DF: 1 RPD Limit	Qua S 07 PM
Analyte Acetone Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8 MSD Sample ID: 2008 Client ID: Analyte Acetone	Result 3148 1219 1184 1188 1119 81579-01A MSD Run ID Result 3234	PQL 120 0 0 0 0 0 VMS11 PQL 120	SPK Val 1177 1177 1177 1177 1177 200824A SPK Val 1166	SPK Ref Value	See 82 0 0 0 0 U See 82	%REC 264 104 101 101 95.1 Units: µg/MeqNo: 6656 %REC 274	Control Limit 20-160 70-130 70-130 70-130 70-130 Cg-dry 6817 Control Limit 20-160	Prep Date: 8/21/ RPD Ref Value 0 0 0 0 Analysis Prep Date: 8/21/ RPD Ref Value 3148	/2020 %RPD Date: 8/24 /2020 %RPD 2.71	DF: 1 RPD Limit W/2020 08: DF: 1 RPD Limit 30	Qua S 07 PM
Analyte Acetone Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Toluene-d8 MSD Sample ID: 2008 Client ID: Analyte Acetone Surr: 1,2-Dichloroethane-d4	Result 3148 1219 1184 1188 1119 31579-01A MSD Run ID Result 3234 1196	PQL 120 0 0 0 0 0 VMS11 PQL 120 0	SPK Val 1177 1177 1177 1177 1177 200824A SPK Val 1166 1166	SPK Ref Value	See 82 0 0 0 U See 82 0	%REC 264 104 101 95.1 Units: µg/M eqNo: 6656 %REC 274 103	Control Limit 20-160 70-130 70-130 70-130 70-130 Cg-dry 6817 Control Limit 20-160 70-130	Prep Date: 8/21/ RPD Ref Value 0 0 0 0 Analysis Prep Date: 8/21/ RPD Ref Value 3148 1219	/2020 %RPD Date: 8/24 /2020 %RPD 2.71 1.86	DF: 1 RPD Limit W2020 08: DF: 1 RPD Limit 30 30	Qua S 07 PM

Note:

Work Order: 20081732 Project: Oronogo

Batch ID: R296689	Instrument ID VMS8		Metho	d: SW82 6	60C					
MBLK San	mple ID: VBLKS2-200825-R29	6689			Units: µg/l	K g	Analys	is Date: 8/2	5/2020 01	:54 PM
Client ID:	Run II	D: VMS8_	200825A		SeqNo: 665	8062	Prep Date:		DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua
1,1,1-Trichloroethane	ND	5.0								
1,1,2,2-Tetrachloroethane	ND	5.0								
1,1,2-Trichloroethane	ND	5.0								
1,1,2-Trichlorotrifluoroetha	ane ND	5.0								
1,1-Dichloroethane	ND	5.0								
1,1-Dichloroethene	ND	5.0								
1,2,4-Trichlorobenzene	ND	5.0								
1,2-Dibromo-3-chloropropa	ane ND	5.0								
1,2-Dibromoethane	ND	5.0								
1,2-Dichlorobenzene	ND	5.0								
1,2-Dichloroethane	ND	5.0								
1,2-Dichloropropane	ND	5.0								
1,3-Dichlorobenzene	ND	5.0								
1,4-Dichlorobenzene	ND	5.0								
2-Butanone	ND	10								
2-Methylnaphthalene	ND	5.0								
4-Methyl-2-pentanone	ND	5.0								
Benzene	ND	5.0								
Bromodichloromethane	ND	5.0								
Bromoform	ND	5.0								
Bromomethane	ND	10								
Carbon disulfide	ND	5.0								
Carbon tetrachloride	ND	5.0								
Chlorobenzene	ND	5.0								
Chloroethane	ND	5.0								
Chloroform	ND	5.0								
Chloromethane	ND	10								
cis-1,2-Dichloroethene	ND	5.0								
cis-1,3-Dichloropropene	ND	5.0								
Cyclohexane	ND	10								
Dibromochloromethane	ND ND	5.0								
Dichlorodifluoromethane	ND	10								
Ethylbenzene	ND	5.0								
Isopropylbenzene	ND	5.0								
Methyl acetate	ND	10								
Methyl tert-butyl ether	ND	5.0								
Methylcyclohexane	ND	10								
Methylene chloride	ND	10								
Styrene	ND ND	5.0								
Tetrachloroethene	ND	5.0								
Toluene	ND ND	5.0								
	ND ND									
trans-1,2-Dichloroethene	ND	5.0								

Work Order: 20081732 Project: Oronogo

QC BATCH REPOR'	Γ
-----------------	---

Batch ID: R296689	Instrument ID VMS8		Method:	SW8260C				
trans-1,3-Dichloropropene	ND	5.0						
Trichloroethene	ND	5.0						
Trichlorofluoromethane	ND	5.0						
Vinyl chloride	ND	5.0						
Xylenes, Total	ND	5.0						
Surr: 1,2-Dichloroethane-	d4 20.41	0	20	0	102	83-132	0	
Surr: 4-Bromofluorobenze	ene 20.2	0	20	0	101	83-111	0	
Surr: Dibromofluorometha	ane 19.67	0	20	0	98.4	77-125	0	
Surr: Toluene-d8	20.11	0	20	0	101	86-108	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20081732 Project: Oronogo

Batch ID: R296689 Instrument ID VMS8 Method: SW8260C

LCS Sample ID: VL	CSS1-200825-R29	6689			ι	Jnits: µg/k	(g	Analys	s Date: 8/2	5/2020 12	:54 PM
Client ID:	Run ID	: VMS8_	200825A		Se	qNo: 665	7723	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
	0.73100.000.00						The state of the	272-2772			Quu
1,1,1-Trichloroethane	41.43	5.0	40		0	104	73-138)		
1,1,2,2-Tetrachloroethane	43.57	5.0	40		0	109	71-126)		
1,1,2-Trichloroethane	40.34	5.0	40		0	101	77-123)		
1,1-Dichloroethane	39.36	5.0	40		0	98.4	63-148)		
1,1-Dichloroethene	38.85	5.0	40		0	97.1	67-156)		
1,2,4-Trichlorobenzene	39.79	5.0	40		0	99.5	70-132)		
1,2-Dibromo-3-chloropropane	45.07	5.0	40		0	113	48-127)		
1,2-Dibromoethane	43	5.0	40		0	108	71-144)		
1,2-Dichlorobenzene	39.84	5.0	40		0	99.6	77-127)		
1,2-Dichloroethane	42.11	5.0	40		0	105	77-127)		
1,2-Dichloropropane	39.34	5.0	40		0	98.4	74-130)		
1,3-Dichlorobenzene	38.91	5.0	40		0	97.3	75-133)		
1,4-Dichlorobenzene	38.91	5.0	40		0	97.3	74-130)		
2-Butanone	40.81	10	40		0	102	55-132	()		
4-Methyl-2-pentanone	54.46	5.0	40		0	136	67-159)		
Benzene	37.35	5.0	40		0	93.4	77-133	()		
Bromodichloromethane	42.39	5.0	40		0	106	69-133)		
Bromoform	35.3	5.0	40		0	88.2	55-126)		
Bromomethane	44.75	10	40		0	112	31-174)		
Carbon disulfide	35.22	5.0	40		0	88	45-160)		
Carbon tetrachloride	37.73	5.0	40		0	94.3	69-140)		
Chlorobenzene	38.18	5.0	40		0	95.4	76-130)		
Chloroethane	35.72	5.0	40		0	89.3	53-150)		
Chloroform	37.4	5.0	40		0	93.5	72-132	7.)		
	27.22										
Chloromethane	40.2	10	40		0	68	43-150)		
cis-1,2-Dichloroethene		5.0	40		0	100	74-134)		
cis-1,3-Dichloropropene	42.91	5.0	40		0	107	62-134)		
Dibromochloromethane	39.95	5.0	40		0	99.9	57-118)		
Dichlorodifluoromethane	27.8	10	40		0	69.5	43-126)		
Ethylbenzene	37.64	5.0	40		0	94.1	75-133)		
Isopropylbenzene	38.21	5.0	40		0	95.5	74-137	1 24)		
Methyl tert-butyl ether	38.69	5.0	40		0	96.7	62-136	()		
Methylene chloride	35.75	10	40		0	89.4	55-157)		
Styrene	40.37	5.0	40		0	101	72-138)		
Tetrachloroethene	38.7	5.0	40		0	96.8	70-171	()		
Toluene	39.33	5.0	40		0	98.3	76-130)		
trans-1,2-Dichloroethene	39.94	5.0	40		0	99.8	65-137)		
trans-1,3-Dichloropropene	40.27	5.0	40		0	101	58-126	()		
Trichloroethene	39.02	5.0	40		0	97.6	75-135	()		
Trichlorofluoromethane	28.3	5.0	40		0	70.8	62-136	()		
Vinyl chloride	32.11	5.0	40		0	80.3	57-143)		
Xylenes, Total	113.3	5.0	120		0	94.4	75-132)		

Work Order: 20081732 Project: Oronogo

QC BATCH REPOR'	Γ
-----------------	---

Batch ID: R296689 Instrume	ent ID VMS8		Method:	SW8260C			
Surr: 1,2-Dichloroethane-d4	20.52	0	20	0	103	83-132	0
Surr: 4-Bromofluorobenzene	19.38	0	20	0	96.9	83-111	0
Surr: Dibromofluoromethane	19.81	0	20	0	99	77-125	0
Surr: Toluene-d8	19.85	0	20	0	99.2	86-108	0

Work Order: 20081732 Project: Oronogo

Batch ID: R296689 Instrument ID VMS8 Method: SW8260C

MS Sample ID: 200	81732-01A MS				Units: µg/	Kg	Analysis	Date: 8/2	25/2020 02:44 PM	
Client ID: Ray 01	Run ID	: VMS8_	200825A		SeqNo: 668	58524	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1,1-Trichloroethane	10.9	5.0	20	(0 54.5	73-138	0			S
1,1,2,2-Tetrachloroethane	11.49	5.0	20		57.4	71-126				S
1,1,2-Trichloroethane	10.81	5.0	20		0 54	77-123				S
1,1-Dichloroethane	11.31	5.0	20		56.6	63-148	0			S
1,1-Dichloroethene	12.27	5.0	20		0 61.4	67-156	0			S
1,2,4-Trichlorobenzene	7.26	5.0	20		36.3	70-132				S
1,2-Dibromo-3-chloropropane	9.68	5.0	20		0 48.4	48-127	0			270
,2-Dibromoethane	11.06	5.0	20		55.3	71-144	0			S
1,2-Dichlorobenzene	8.94	5.0	20	(0 44.7	77-127	0			S
1,2-Dichloroethane	11.79	5.0	20		59	77-127	0			S
1,2-Dichloropropane	10.89	5.0	20	(54.4	74-130	0			S
1,3-Dichlorobenzene	8.69	5.0	20	(0 43.4	75-133	0			S
1,4-Dichlorobenzene	8.69	5.0	20	(0 43.4	74-130	0			S
2-Butanone	20.41	10	20	20.57	7 -0.792	55-132	0			S
I-Methyl-2-pentanone	14.33	5.0	20		71.6	67-159	0			
Benzene	10.29	5.0	20	(51.4	77-133	0			S
Bromodichloromethane	11.41	5.0	20	(57	69-133	0			S
Bromoform	8.78	5.0	20	(0 43.9	55-126	0			S
Bromomethane	12.22	10	20	(0 61.1	31-174	0			
Carbon disulfide	10.97	5.0	20	1.226	6 48.7	45-160	0			
Carbon tetrachloride	10.11	5.0	20	(50.6	69-140	0			S
Chlorobenzene	9.75	5.0	20	(0 48.8	76-130	0			S
Chloroethane	11.24	5.0	20	(56.2	53-150	0			
Chloroform	10.91	5.0	20	(54.6	72-132	0			S
Chloromethane	10.42	10	20	(52.1	43-150	0			
cis-1,2-Dichloroethene	11.62	5.0	20	(58.1	74-134	0			S
cis-1,3-Dichloropropene	11.26	5.0	20	(56.3	62-134	0			S
Dibromochloromethane	10.17	5.0	20	(50.8	57-118	0			S
Dichlorodifluoromethane	13.09	10	20	(0 65.4	43-126	0			
Ethylbenzene	9.95	5.0	20	(49.8	75-133	0			S
sopropylbenzene	9.57	5.0	20	(0 47.8	74-137	0			S
Methyl tert-butyl ether	11.71	5.0	20	(58.6	62-136	0			S
Methylene chloride	10.38	10	20	(51.9	55-157	0			S
Styrene	9.68	5.0	20	(0 48.4	72-138	0			S
etrachloroethene	10.6	5.0	20	(53	70-171	0			S
Toluene	10.3	5.0	20	1.367	7 44.7	76-130	0			S
rans-1,2-Dichloroethene	11.95	5.0	20	(59.8	65-137	0			S
rans-1,3-Dichloropropene	10.51	5.0	20		52.6	58-126	0			S
Trichloroethene	10.4	5.0	20	(52	75-135	0			S
Trichlorofluoromethane	9.29	5.0	20	(0 46.4	62-136	0			S
Vinyl chloride	11.44	5.0	20	(57.2	57-143		6		
Kylenes, Total	30.2	5.0	60	(50.3	75-132	0			S

Work Order: 20081732 Project: Oronogo

Batch ID: R296689	Instrument ID VMS8		Method:	SW8260C				
Surr: 1,2-Dichloroethane	-d4 21.12	0	20	0	106	83-132	0	
Surr: 4-Bromofluorobenz	ene 20.36	0	20	0	102	83-111	0	
Surr: Dibromofluorometh	ane 20.68	0	20	0	103	77-125	0	
Surr: Toluene-d8	19.95	0	20	0	99.8	86-108	0	

QC BATCH REPORT

Client: Environmental Quality Management, Inc.

Work Order: 20081732 Project: Oronogo

Batch ID: R296689 Instrument ID VMS8 Method: SW8260C

MSD Sample ID: 200	81732-01A MSD				Units: µg/	Kg	Analysis	Date: 8/25	5/2020 03:	01 PM
Client ID: Ray 01	Run ID	VMS8_	200825A		SeqNo: 665	8525	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1,1-Trichloroethane	4.26	5.0	20	(21.3	73-138	10.9	0	30	JS
1,1,2,2-Tetrachloroethane	3.87	5.0	20		19.4	71-126	11.49	0	1,0310.9	JS
1,1,2-Trichloroethane	4.06	5.0	20		20.3	77-123	10.81	0	30	JS
1,1-Dichloroethane	4.5	5.0	20		22.5	63-148	11.31	0	P-F-1-P-112	JS
1,1-Dichloroethene	4.9	5.0	20		24.5	67-156	12.27	0	30	JS
1,2,4-Trichlorobenzene	1.81	5.0	20		9.05	70-132	100000	0		JS
1,2-Dibromo-3-chloropropane	2.85	5.0	20		14.2	48-127	9.68	0	30	JS
1,2-Dibromoethane	3.88	5.0	20		19.4	71-144	11.06	0		JS
1,2-Dichlorobenzene	2.53	5.0	20		12.6	77-127	8.94	0	30	JS
1,2-Dichloroethane	4.76	5.0	20	-	23.8	77-127	11.79	0	1.770,000	JS
1,2-Dichloropropane	4.05	5.0	20		20.2	74-130	10.89	0		JS
1,3-Dichlorobenzene	2.34	5.0	20		0 11.7	75-133		0	0.650	JS
1,4-Dichlorobenzene	2.34	5.0	20		11.7	74-130	8.69	0	30	JS
2-Butanone	5.95	10	20	20.57	NAME OF GROOM AND	55-132		0	30	JS
4-Methyl-2-pentanone	5.02	5.0	20		25.1	67-159	14.33	96.2	30	SR
Benzene	4.04	5.0	20	9	20.2	77-133	10.29	0	2175	JS
Bromodichloromethane	4.18	5.0	20		20.2	69-133	11.41	0	30	JS
Bromoform	3.35	5.0	20		0 16.8	55-126		0	E. S. S. C. S.	JS
Bromomethane	4.33	10	20		21.6	31-174	12.22	0		JS
Carbon disulfide	4.35	5.0	20	1.226		45-160	10.97	0	Part 1911	JS
Carbon tetrachloride	3.73	5.0	20		13.6	69-140	10.97	0	30	JS
	3.18	5.0	20		550	1991 84400	77777	0	30	JS
Chlorobenzene Chloroethane	5.49	5.0	20			76-130 53-150	9.75	68.7	30	SR
Chloroform	4.24	5.0	20		27.4	72-132	11.24	00.7		JS
	4.24									
Chloromethane	4.66	10 5.0	20		22.6	43-150 74-134	10.42	0	30	JS JS
cis-1,2-Dichloroethene	3.77									
cis-1,3-Dichloropropene		5.0	20		18.8	62-134	11.26	0	(0.000)	JS
Dibromochloromethane	3.34	5.0	20		16.7	57-118	10.17	0	30	JS
Dichlorodifluoromethane	5.38	10	20		26.9	43-126	13.09	0	30	JS
Ethylbenzene 	3.18	5.0	20		15.9	75-133		0	30	JS
Isopropylbenzene	2.92	5.0	20	27	14.6	74-137	9.57	0	30	JS
Methyl tert-butyl ether	4.66	5.0	20		23.3	62-136		0		JS
Methylene chloride	ND	10	20		0	55-157		0	F. 10 CO.	S
Styrene	2.85	5.0	20		14.2	72-138		0		JS
Tetrachloroethene	3.41	5.0	20		17	70-171	10.6	0		JS
Toluene	3.39	5.0	20	1.367		76-130		0		JS
trans-1,2-Dichloroethene	4.72	5.0	20	10	23.6	65-137	C PROPERTY.	0	And the second	JS
trans-1,3-Dichloropropene	3.36	5.0	20		16.8	58-126		0	30	JS
Trichloroethene	3.81	5.0	20) 19	75-135		0	F.19915	JS
Trichlorofluoromethane	3.64	5.0	20		18.2	62-136		0		JS
Vinyl chloride	4.94	5.0	20	(24.7	57-143	11.44	0		JS
Xylenes, Total	9.41	5.0	60	(15.7	75-132	30.2	105	30	SR

Work Order: 20081732
Project: Oronogo

QC BATCH REPORT	Γ
-----------------	---

Batch ID: R296689 Instrument	ID VMS8		Method:	SW8260C					
Surr: 1,2-Dichloroethane-d4	21.88	0	20	0	109	83-132	21.12	3.53	30
Surr: 4-Bromofluorobenzene	20.21	0	20	0	101	83-111	20.36	0.739	30
Surr: Dibromofluoromethane	20.97	0	20	0	105	77-125	20.68	1.39	30
Surr: Toluene-d8	19.73	0	20	0	98.6	86-108	19.95	1.11	30

The following samples were analyzed in this batch: 20081732-01A

Work Order: 20081732 Project: Oronogo

MBLK	Sample ID: WBLKS-R2	96669				Uı	nits: % of	sample	Analysis	Date: 8/24	1/2020 10:	15 AN
Client ID:		Run ID	MOIST	_200824A		Sec	No: 6657	131	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Moisture		ND	0.10									
LCS	Sample ID: LCS-R2966	69				Uı	nits: % of	sample	Analysis	Date: 8/24	V2020 10:	15 AN
Client ID:		Run ID	MOIST	_200824A		Sec	No: 665 7	7130	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Moisture		99.99	0.10	100		0	100	98-102	0			
DUP	Sample ID: 20081822-0	1B DUP				Units: % of sample Analysis Date: 8/24				l/2020 10:	15 AN	
Client ID:		Run ID	MOIST	_200824A		Sec	No: 665 7	7117	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Moisture		11.39	0.10	0		0	0	0-0	11.45	0.525	10	
DUP	Sample ID: 20081822-1	1B DUP				Units: % of sample Analysis Date: 8/24					V/2020 10:	15 AN
Client ID:		Run ID	MOIST	_200824A		Sec	No: 6657	128	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Moisture		19.98	0.10	0		0	0	0-0	19.65	1.67	10	

Preservative Key: 1-HCI

Cincinnati, OH +1 513 733 5336

Everett, WA Holland, Mi +1 425 356 2600 +1 616 399 6070

Fort Collins, CO

+1 970 490 1511

Chain of Custody Form

Houston, TX +1 281 530 5656

Spring City, PA +1 610 948 4903

South Charleston, WV +1 304 356 3168

Page _ of Middletown, PA +1 717 944 5541 Salt Lake City, UT +1 801 266 7700

York, PA +1 717 505 5280

((ALS)				(coc ID: 2	23210)												
						ALS Project	Manager:	-				ALS	Work	Order	#: 2	06	,81	73 Z		
Customer Information					Project Information					Parameter/Method Request for Analysis										
Purchase Orde	er	Project N	Name	Oronogo				Α	Vola	tiles	-EPA		5035	1824	,0	***				
Work Orde	er	Project Nu	mber	030319.0001				В	Semi	volat	rites -	FPA	8	270						
Company Nam	e Environmental Quality Management, i	Bill To Com	pany	Environ	mental	Quality Mane	gement, In	С	THE SHIP PERSON AND ADDRESS OF THE SHIP PERSON ADDRESS OF THE SHIP PERSON AND ADDRESS OF THE									et et et en		
Send Report T	o adragotta Oegm.com	Invoice	Attn	Ascount	is Pøya	abie		D												
· · · · · · · · · · · · · · · · · · ·	1900 Carillon Blvd			1600 Ca	anillon (Brd		Е	Metal		A	60	T			,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************			
Addres	s	Add	dress						Herbie											
City/State/Zi _i	p Cincinnati, OH 45240	City/State	e/Zip	Cincinn	atı, OH	45240	oferent fortrate encountry encountry	G	1101.20			and the second second								
Phone	e (51%) 825-7500	Р	hone	(513) 825-7500				Н												
Fa	x (513) 323-7495		Fax	(513) 325-7495				ı							A-FA					
e-Mail Addres	s	e-Mail Add	dress					J								,,,,,,		***************************************		
No.	Sample Description	Date	Ti	me	Matrix	Pres.	# Bottles	A	В	С	D	E	F	G	Н	1	J	Hold		
1 Ray B	}/	8/20/2020	87.	5٥ <u>.</u>	ડ ો l	5,7,8	6	K	×	×	K	×	x							
2																				
3								-												
4						**************************************												747447444		
5))					
6											ļ				,			Par A series		
7		d d d d			esseren er	***************************************						ļ						***************************************		
8		######################################			-,,,-,,-,							,,,								
9				<u> </u>				1												
10			-			111111111111111111111111111111111111111									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Sampler(s) Pleas	se Print & Sign	Shipme	ent Meth	od	R	equired Turnar	ound Time: (Chec	k Box)	rn ow	<u> </u>		<u>.</u>	Ā	lesults	Due D	ate:			
Harlan Smith	n Hardon dik	P	edEx		***************************************	Std 10 V	VK Days []5 V	VK Days	√ 2 \	ner MK Days	\$	24 Hou	ž.						
Relinquished by:	Date:	Time: 9:45	Receiv	ed by:			, /	Note		*						•	**************************************			
nemiquished by:	Date: 0/21/28	Time:	Receiv	ed by (Labor	atory):	7/1	t	C	ooler ID	Coo	ler Temp). QC	Package			lox Bel	20.00			
Logged by (Labora	atory): Date:	9:30 Time:	Officer	ed by (Labor	atory);//	J-[4]				+4	600	-		al II Std al III Std		r Dele	I TPP	P CheckList P Levei IV		
55	atopy): Date:	1054			\mathbb{Z}						なし		Leve	IIV SW	846/CLF	3		ru maassi sa		

4-NaOH

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.

3. The Chain of Custody is a legal document. All information must be completed accurately.

6-NaHSO_a /7-Other

8-4°C

9-5035

5-Na₂S₂O₃

3-H2SO4

2-HNO₃

Copyright 2011 by ALS Environmental.

Client Name: **EQM - CINCINNATI**

Sample Receipt Checklist

Date/Time Received:

21-Aug-20 09:30

Work Order:	20081732			Received by	y: <u>M.</u>	<u>JG</u>		
Checklist comp	leted by Matth	lew Gaylord	21-Aug-20	Reviewed by:	Bill Carey			24-Aug-20
Madelinia	eSignature		Date		eSignature			Date
Matrices: Carrier name:	<u>Soil</u> FedEx							
Shipping contai	ner/cooler in good	condition?	Yes 🗸	No 🗌	Not Present			
Custody seals i	ntact on shipping	container/cooler?	Yes 🗸	No 🗌	Not Present			
Custody seals i	ntact on sample b	ottles?	Yes	No 🗌	Not Present	\checkmark		
Chain of custoo	ly present?		Yes 🗸	No 🗌				
Chain of custoo	ly signed when rel	inquished and received?	Yes 🗸	No 🗌				
Chain of custoo	ly agrees with sam	nple labels?	Yes 🗸	No 🗌				
Samples in pro	per container/bottle	e?	Yes 🗸	No 🗌				
Sample contain	ers intact?		Yes 🗸	No 🗌				
Sufficient samp	le volume for indic	cated test?	Yes 🗸	No 🗌				
All samples rec	eived within holdin	ng time?	Yes 🗸	No 🗌				
Container/Temp	p Blank temperatu	re in compliance?	Yes 🗸	No 🗌				
Sample(s) rece	ived on ice?		Yes 🗸	No 🗌				
	/Thermometer(s):		4.6/4.6C		IR1			
Cooler(s)/Kit(s)								
	ple(s) sent to stora als have zero head	-	8/21/2020 1 Yes	11:55:12 AM No	No VOA vials su	bmitted	✓	
	eptable upon recei		Yes	No 🗌	N/A 🗸			
pH adjusted?		•	Yes	No 🗌	N/A 🔽			
pH adjusted by:	:		-					
Login Notes:								
						==:		
Client Contacte	d:	Date Contacted	d:	Person	Contacted:			
Contacted By:		Regarding:						
Comments:								
Commonto.								
CorrectiveActio	n:							

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

August 28, 2020

Mr. Bill Carey ALS Environmental-Holland 3352 128th Avenue Holland, MI 49424

Certificate of Analysis

Project Name: 2020-HERBICIDES FULL LIST

SOIL - RUSH

Purchase Order: 20-122019855

Workorder: **3123523**

Workorder ID: 20081732

Dear Mr. Carey:

Enclosed are the analytical results for samples received by the laboratory on Tuesday, August 25, 2020.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Ms. Sarah S Leung (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Brandon Frye

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Ms. Sarah S Leung
Project Coordinator

ALS Environmental Laboratory Locations Across North America

Report ID: 3123523 - 8/28/2020 Page 1 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3123523 20081732

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
3123523001	Ray 01	Solid	8/20/2020 08:50	8/25/2020 09:35	Collected by Client

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3123523 - 8/28/2020 Page 2 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3123523 20081732

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All L brary Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97) refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- -- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.

Standard Acronyms/Flags

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Sp ke
- MSD Matrix Sp ke Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
 LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- * Result outside of QC limits

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3123523 - 8/28/2020 Page 3 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3123523 20081732

Lab ID: 3123523001 Date Collected: 8/20/2020 08:50 Matrix: Solid

Sample ID: Ray 01 Date Received: 8/25/2020 09:35

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
HERBICIDES										
2,4-D	ND		ug/kg	120	SW846 8151A	8/27/20 00:30	S7M	8/28/20 01:42	BS	Α
2,4-DB	ND		ug/kg	120	SW846 8151A	8/27/20 00:30	S7M	8/28/20 01:42	BS	Α
Dalapon	ND		ug/kg	120	SW846 8151A	8/27/20 00:30	S7M	8/28/20 01:42	BS	Α
Dicamba	ND		ug/kg	120	SW846 8151A	8/27/20 00:30	S7M	8/28/20 01:42	BS	Α
Dichloroprop	ND		ug/kg	120	SW846 8151A	8/27/20 00:30	S7M	8/28/20 01:42	BS	Α
Dinoseb	ND		ug/kg	204	SW846 8151A	8/27/20 00:30	S7M	8/28/20 01:42	BS	Α
Pentachlorophenol	ND		ug/kg	120	SW846 8151A	8/27/20 00:30	S7M	8/28/20 01:42	BS	Α
2,4,5-T	ND		ug/kg	204	SW846 8151A	8/27/20 00:30	S7M	8/28/20 01:42	BS	Α
2,4,5-TP	ND		ug/kg	120	SW846 8151A	8/27/20 00:30	S7M	8/28/20 01:42	BS	Α
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4-Dichlorophenylacetic acid (S)	65		%	36 - 113	SW846 8151A	8/27/20 00:30	S7M	8/28/20 01:42	BS	Α
WET CHEMISTRY										
Moisture	18.8		%	0.1	S2540G-11			8/26/20 12:00	DXC	Α
Total Solids	81.2		%	0.1	S2540G-11			8/26/20 12:00	DXC	Α

Ms. Sarah S Leung Project Coordinator

Report ID: 3123523 - 8/28/2020 Page 4 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

Workorder: 3123523 20081732

Lab ID	Sample ID	Analysis Method	Prep Method	Leachate Method
3123523001	Ray 01	S2540G-11		
3123523001	Ray 01	SW846 8151A	SW846 8151A	

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3123523 - 8/28/2020 Page 5 of 12

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJ LA 74618 State Certifications: FL E871113, WA C999, MD 128, VA 460157, WV DW 9961-C, WV 343

QUALITY CONTROL DATA

Workorder: 3123523 20081732

QC Batch: EXTR/61612 Analysis Method: SW846 8151A

QC Batch Method: SW846 8151A Associated Lab Samples: 3123523001

METHOD BLANK: 3188332

Parameter	Blank Result	Units	Reporting Limit
2,4-D	ND	ug/kg	100
2,4-DB	ND	ug/kg	100
Dalapon	ND	ug/kg	100
Dicamba	ND	ug/kg	100
Dichloroprop	ND	ug/kg	100
Dinoseb	ND	ug/kg	170
Pentachlorophenol	ND	ug/kg	100
2,4,5-T	ND	ug/kg	170
2,4,5-TP	ND	ug/kg	100
2,4-Dichlorophenylacetic acid (S)	49.3	%	36 - 113

LABORATORY CONTROL SA	MIDI E- 2100222	

Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit
2,4-D	74.3	ug/kg	333	248	23 - 130
2,4-DB	76.8	ug/kg	333	256	10 - 130
Dalapon	40.4	ug/kg	333	135	24 - 65
Dicamba	64.8	ug/kg	333	216	44 - 89
Dichloroprop	74.8	ug/kg	333	249	36 - 107
Dinoseb	53.4	ug/kg	333	178	25 - 100
Pentachlorophenol	60	ug/kg	333	200	43 - 90
2,4,5-T	59.1	ug/kg	333	197	22 - 132
2,4,5-TP	61	ug/kg	333	203	49 - 105
2,4-Dichlorophenylacetic acid (S)	57	%			36 - 113

MATRIX SPIKE: 3188334 DUPLICATE: 3188335 ORIGINAL: 3123507001

****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike

percent recoveries. This result is not a final value and cannot be used as such.

Parameter	Original Result	Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	
2,4-Dichlorophenylacetic	43.7	%				43.7	39.8	36 - 113			

acid (S)

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3123523 - 8/28/2020 Page 6 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3123523 20081732

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3123523 - 8/28/2020 Page 7 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3123523 20081732

QC Batch: WETC/243210 Analysis Method: S2540G-11

QC Batch Method: S2540G-11

Associated Lab Samples: 3123523001

SAMPLE DUPLICATE: 31887	753 ORIGINAL	.: 3123474	1001		
Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture	13.6774	%	13.7311	.39	10
Total Solids	86.3225	%	86.2688	.06	5

SAMPLE DUPLICATE: 3188754	ORIGINAL	.: 3123506	6002		
Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture	28.3568	%	31.1913	9.52	10
Total Solids	71.6431	%	68.8086	4.04	5

SAMPLE DUPLICATE: 318875	5 ORIGINAL	: 3123618	001		
Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture	20.1811	%	21.0344	4.14	10
Total Solids	79.8188	%	78.9655	1.07	5

SAMPLE DUPLICAT	E: 3188756	ORIGINAL	: 3123618	013			
Parameter		Original Result	Units	DUP Result	RPD	Max RPD	
Moisture		19.9155	%	14.9369	28.6*	10	
Total Solids		80.0844	%	85.063	6.03*	5	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3123523 - 8/28/2020 Page 8 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA QUALIFIERS

Workorder: 3123523 20081732

QUALITY CONTROL PARAMETER QUALIFIERS

Lab ID # Sample Type Analytical Method Analyte

3188755 1 Duplicate S2540G-11 Total Solids

Analyte was analyzed past the 7 day holding time.

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3123523 - 8/28/2020 Page 9 of 12

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 3123523 20081732

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
3123523001	Ray 01	SW846 8151A	EXTR/61612	SW846 8151A	SVGC/58004
3123523001	Ray 01			S2540G-11	WETC/243210

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3123523 - 8/28/2020 Page 10 of 12

Subcontractor:

ALS Environmental

301 Fulling Mill Road

Middletown, PA 17057

TEL:

(717) 944-5541

FAX: (717) 944-1430

Acct#:

14513

Date: -25-Aug-20

Environmental

Salesperson Josh Mckinney Customer Information Project Information Parameter/Method Request for Analysis A Subcontracted Analyses (SUBCONTRACT) Purchase Order Project Name 20081732 Work Order Project Number В Bill To Company С Company Name ALS Group USA, Corp ALS Group USA, Corp Send Report To Bill Carey Inv Attn Accounts Payable D E Address 3352 128th Ave Address 3352 128th Ave F City/State/Zip Holland, Michigan 49424 City/State/Zip Ģ Holland, Michigan 49424 Phone Н Phone (616) 399-6070 (616) 399-6070 Fax (616) 399-6185 Fax (616) 399-6185 eMail Address bill.carey@alsglobal.com eMail CC ALS Sample ID Client Sample ID Matrix Collection Date 24hr **Bottle** A В C D E G н Ray 01 . 20081732-01B Soil 20/Aug/2020 8:50 (1) 4OZGNEAT X

Comments: Please an	alyze these samples for Herbici	des by SW8151RUSH TAT plea	se.		3 3
S	8/24/20 1520	Feder			
Relinquished by: Fedex	8/25/20 935	Received by:	Date/Time 8/25/20 935	Cooler IDs CO 294	Report/QC Level
Relinquished by:	Date/Time	Received by:	Date/Time		

- 301 Fulling Mill Road Middletown, PA 17057 P: (717) 944-5541 F: (717) 944-1430

Condition of Sample Receipt Form

"liant:		Work Order #:	2000	Initials:	Date:	
lient:	Holland	3	123523	SEC	8/25/22	
AL					NONE (YES)	NO
. Were airb	ills / tracking number	s present and recorded?	1000 . 760 2	7/27= :		
		Tracking number:				NO
. Are Custo	ody Seals on shipping	containers intact?	***************************************	***************************************	MONE YES	NO
Are Custo	dy Seals on sample of	ontainers intact?			NUNE YES	NO
Water water Account		d. A managed A. de			[TEP	6
. Are the C	OC and bottle labels	complete, legible and in agreer	ment?		7/25/20	NO
Sa Does	the COC contain sam	ple locations?				NO
5b. Does	the COC contain date	e and time of sample collection	n for all samples?			(NO)
5¢. Does	the COC contain sam	ple collectors name?				0
5d. Does	s the COC note the typ	pe(s) of preservation for all bot	tles?		(TES)	NO
Se. Does	the COC note the nu	mber of bottles submitted for	each sample!			NO
5f. Does	the COC note the typ	e of sample, composite or gra	D/		(F)	NO
5g. Does	s the COC note the ma	atrix of the sample(s)?	eractly?!	***************************************		NO
6. Are all ac	queous samples requir	ring preservation preserved co	social analysis with a	ifficient volume?	YES	NO
7. Were all	samples placed in the	proper containers for the requ	Jested analyses, with si	melent voidine	MES	NO
8. Are all sa	imples within holding	times for the requested analys	ses/	broken leaking froz		NO
9. Were all	sample containers rec	eived intact and headspace fre	ou EBV 235 3 and 183.	F (LL Ha)?	_	NO
10. Did we	receive trip blanks (a	pplies only for methods EPA 30	04, EPA 324.2 and 103	C (CC 11g):	E	NO
11. Were th	e samples received or	1 ice?				NO
12. Were sa	ample temperatures m	neasured at 0.0-6.0°C	king Water questions h	elow	YES	M
13. Are the	samples DW matrix?	If YES, fill out Reportable Drin d for SDWA compliance reporti	nn?		N/A YES	NO
13a. Are	the samples required	SDWA PWS ID#?	uy		N/A YES	NO
13b. Dic	the client provide a	rved SDWA samples pH 5-9?			N/A YES	NO
13c. Are	all aqueous unpresent	e SDWA sample location ID/De	scription?		N/A YES	NO
13d. Did	the client provide th	e SDWA sample type (D, E, R, C	. P. S)?	***************************************	N/A YES	NO
13e. Dio	the client provide th	e 3DWA sample type (o) of 14				_
3.54	Cooler #:					3(1)
	Temperature (°C):	o°			_	
	Thermometer ID:	215/5/		101100-1004 Page 1		
					900 - W-D	
	Radiological (µCi):					
COMM	NTS (Required	for all NO response	s above and any	sample non-	conformance):	
COMM	LIVIS (Regaines	10. 4	W W W W W W W W W W W W W W W W W W W			
1				4		
			,			
			(
		/		d -11 and arress		-
¹ Final deter	rmination of correct pre	eservation for analysis such as vo	olatiles, microbiology, an	d oil and grease	Rev 1/20,	/2020
is made in	n the analytical departn	nent at the time of or following t	are arrarysis		-	

SAMPLE ID	LAB ID	METHOD	CAS NUMBER	ANALYTE	MDL	RL	RESULT	UNITS	Table B-1 Lowest Default Target Levels All Soil Types	EPA May/2020 THQ=0.1 Screening Level Residential Soil	Background USGS Newton County (NGS sample C- 311257) A- horizon	Background USGS Lawrence County (NGS sample C-311261) A-horizon
Ray 01	20081732-01	SW8260C - VOC_8260_SLL	78-93-3	2-Butanone	0.0066	0.013	0.023	mg/Kg-dry	7.3	2700		
Ray 01	20081732-01	SW6020B - ICP_6020_S	7429-90-5	Aluminum	280	360	4700	mg/Kg-dry	76000	7700		
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-36-0	Antimony	0.12	0.45	0.62	mg/Kg-dry	6.7	3.1		
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-38-2	Arsenic	0.053	0.45	2.5	mg/Kg-dry	3.9	0.68	7.7	8.9
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-39-3	Barium	0.41	0.45	140	mg/Kg-dry	2000	1500		
Ray 01	20081732-01	SW846 8270D - SVO_8270_S	56-55-3	Benzo(a)anthracene	0.0063	0.0073	0.015	mg/Kg-dry	6.1	1.1		
Ray 01	20081732-01	SW846 8270D - SVO_8270_S	50-32-8	Benzo(a)pyrene	0.0045	0.0073	0.019	mg/Kg-dry	0.62	0.11		
Ray 01	20081732-01	SW846 8270D - SVO_8270_S	205-99-2	Benzo(b)fluoranthene	0.0054	0.0073	0.033	mg/Kg-dry	6.2	1.1		
Ray 01	20081732-01	SW846 8270D - SVO_8270_S	191-24-2	Benzo(g,h,i)perylene	0.0056	0.0073	0.010	mg/Kg-dry	1700	11		
Ray 01	20081732-01	SW846 8270D - SVO_8270_S	207-08-9	Benzo(k)fluoranthene	0.0055	0.0073	0.011	mg/Kg-dry	62	NS		
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-41-7	Beryllium	0.03	0.18	0.58	mg/Kg-dry	0.74	16	1.2	1.2
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-43-9	Cadmium	0.027	0.18	3.6	mg/Kg-dry	9.3	7.8		
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-70-2	Calcium	21	45	1700	mg/Kg-dry	N/A	NS	1700	2600
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-47-3	Chromium	0.2	0.45	8.6	mg/Kg-dry	N/A	NS		
Ray 01	20081732-01	SW846 8270D - SVO_8270_S	218-01-9	Chrysene	0.0059	0.0073	0.010	mg/Kg-dry	600	110		
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-48-4	Cobalt	0.073	0.45	6.4	mg/Kg-dry	N/A	2.3	9.3	20.9
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-50-8	Copper	0.45	0.45	10	mg/Kg-dry	620	310		
Ray 01	20081732-01	SW846 8270D - SVO_8270_S	206-44-0	Fluoranthene	0.0035	0.0073	0.013	mg/Kg-dry	2300	310		
Ray 01	20081732-01	SW846 8270D - SVO_8270_S	193-39-5	Indeno(1,2,3-cd)pyrene	0.0051	0.0073	0.016	mg/Kg-dry	3.8	1.1		
Ray 01	20081732-01	SW6020B - ICP_6020_S	7439-89-6	Iron	14	18	6500	mg/Kg-dry	N/A	5500	18100	21900
Ray 01	20081732-01	SW6020B - ICP_6020_S	7439-92-1	Lead	0.21	0.45	87	mg/Kg-dry	3.7	400	27.3	33.6
Ray 01	20081732-01	SW6020B - ICP_6020_S	7439-95-4	Magnesium	12	18	490	mg/Kg-dry	N/A	NS	1200	1600
Ray 01	20081732-01	SW6020B - ICP_6020_S	7439-96-5	Manganese	3.7	4.5	720	mg/Kg-dry	2700	180	697	1390
Ray 01	20081732-01	SW7471B - HG_7471_S	7439-97-6	Mercury	0.024	0.035	0.47	mg/Kg-dry	2.2	1.1		
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-02-0	Nickel	0.23	0.45	6.2	mg/Kg-dry	500	150		
Ray 01	20081732-01	SW6020B - ICP_6020_S	9/7/7440	Potassium	7.5	18	470	mg/Kg-dry	N/A	NS	8200	8700
Ray 01	20081732-01	SW846 8270D - SVO_8270_S	129-00-0	Pyrene	0.0013	0.0073	0.011	mg/Kg-dry	1500	NS		
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-22-4	Silver	0.059	0.45	0.77	mg/Kg-dry	16	39		
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-62-2	Vanadium	0.11	0.45	15	mg/Kg-dry	530	39		
Ray 01	20081732-01	SW6020B - ICP_6020_S	7440-66-6	Zinc	8.7	8.9	510	mg/Kg-dry	7200	2300	31	39

Exceeds MRBCA limit, but less than EPA RSL